14,045 research outputs found

    The cratering record in the inner solar system: Implications for earth

    Get PDF
    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters. The estimated size of the impactor purportedly responsible for the Cretaceous-Tertiary mass extinctions is 10 km in diameter. Thus impactors greater than or equal to the size postulated for K-T impactor are rare within the inner solar system since the end of heavy bombardment

    Relative chronology of Martian volcanoes

    Get PDF
    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history

    Radial Velocity Confirmation of a Binary Detected from Pulse Timings

    Get PDF
    A periodic variation in the pulse timings of the pulsating hot subdwarf B star CS 1246 was recently discovered via the O-C diagram and suggests the presence of a binary companion with an orbital period of two weeks. Fits to this phase variation, when interpreted as orbital reflex motion, imply CS 1246 orbits a barycenter 11 light-seconds away with a velocity of 16.6 km/s. Using the Goodman spectrograph on the SOAR telescope, we decided to confirm this hypothesis by obtaining radial velocity measurements of the system over several months. Our spectra reveal a velocity variation with amplitude, period, and phase in accordance with the O-C diagram predictions. This corroboration demonstrates that the rapid pulsations of hot subdwarf B stars can be adequate clocks for the discovery of binary companions via the pulse timing method.Comment: Accepted for publication in ApJ Letters; 5 pages, 2 figures, 3 tables; uses emulateap

    Operation of the ATLAS Semiconductor Tracker

    Get PDF
    ATLAS is one of the large general purpose detectors for the Large Hadron Collider at CERN, designed to search for a wide range of New Physics phenomena. In order to fulfil this design brief, a precise, fast, radiation-hard tracking system is essential. In this note I will describe the design and construction of the ATLAS Semiconductor Tracker (SCT), and will present some results from commissioning runs on cosmic ray data

    Depth-diameter ratios for Martian impact craters: Implications for target properties and episodes of degradation

    Get PDF
    This study determines crater depth through use of photoclinometric profiles. Random checks of the photoclinometric results are performed using shadow estimation techniques. The images are Viking Orbiter digital format frames; in cases where the digital image is unusable for photoclinometric analysis, shadow estimation is used to determine crater depths. The two techniques provide depth results within 2 percent of each other. Crater diameters are obtained from the photoclinometric profiles and checked against the diameters measured from the hard-copy images using a digitizer. All images used in this analysis are of approximately 40 m/pixel resolution. The sites that have been analyzed to date include areas within Arabia, Maja Valles, Memnonia, Acidalia, and Elysium. Only results for simple craters (craters less than 5 km in diameter) are discussed here because of the low numbers of complex craters presently measured in the analysis. General results indicate that impact craters are deeper than average. A single d/D relationship for fresh impact craters on Mars does not exist due to changes in target properties across the planet's surface. Within regions where target properties are approximately constant, however, d/D ratios for fresh craters can be determined. In these regions, the d/D ratios of nonpristine craters can be compared with the fresh crater d/D relationship to obtain information on relative degrees of crater degradation. This technique reveals that regional episodes of enhanced degradation have occurred. However, the lack of statistically reliable size-frequency distribution data prevents comparison of the relative ages of these events between different regions, and thus determination of a large-scale episode (or perhaps several episodes) cannot be made at this time
    corecore