1,248 research outputs found

    The DRIFT Directional Dark Matter Detector and First Studies of the Head-Tail Effect

    Full text link
    Measurement of the direction of the elastic nuclear recoil track and ionization charge distribution along it, gives unique possibility for unambiguous detection of the dark matter WIMP particle. Within current radiation detection technologies only Time Projection Chambers filled with low pressure gas are capable of such measurement. Due to the character of the electronic and nuclear stopping powers of low energy nuclear recoils in the gas, an asymmetric ionization charge distribution along their tracks may be expected. Preliminary study of this effect, called Head-Tail, has been carried out here using the SRIM simulation program for Carbon and Sulfur in 40 Torr carbon disulfide, as relevant to the DRIFT detector. Investigations were focused on ion tracks projected onto the axis of the initial direction of motion in the energy range between 10 and 400 keV. Results indicate the likely existence of an asymmetry influenced by two competing effects: the nature of the stopping power and range straggling. The former tends to result in the Tail being greater than the Head and the latter the reverse. It has been found that for projected tracks the mean position of the ionization charge flows from 'head' to 'tail' with the magnitude depending on the ion type and its energy.Comment: To appear in the proceedings of Dark 2007 Sixth International Heidelberg conference on "Dark Matter in Astro & Particle Physics", Sydney, Australia 24th-28th September 200

    The expected background spectrum in NaI dark matter detectors and the DAMA result

    Full text link
    Detailed Monte Carlo simulations of the expected radioactive background rates and spectra in NaI crystals are presented. The obtained spectra are then compared to those measured in the DAMA/NaI and DAMA/LIBRA experiments. The simulations can be made consistent with the measured DAMA spectrum only by assuming higher than reported concentrations of some isotopes and even so leave very little room for the dark matter signal. We conclude that any interpretation of the annual modulation of the event rate observed by DAMA as a dark matter signal, should include full consideration of the background spectrum. This would significantly restrict the range of dark matter models capable of explaining the modulation effect.Comment: 17 pages, 6 figure

    Narrow muon bundles from muon pair production in rock

    Get PDF
    We revise the process of muon pair production by high-energy muons in rock using the recently published cross-section. The three-dimensional Monte Carlo code MUSIC has been used to obtain the characteristics of the muon bundles initiated via this process. We have compared them with those of conventional muon bundles initiated in the atmosphere and shown that large underground detectors, capable of collecting hundreds of thousands of multiple muon events, can discriminate statistically muon induced bundles from conventional ones. However, we find that the enhancement of the measured muon decoherence function over that predicted at small distances, recently reported by the MACRO experiment, cannot be explained by the effect of muon pair production alone, unless its cross-section is underestimated by a factor of 3.Comment: 10 pages, 1 table, 2 figures, to be published in Physics Letters

    The DRIFT Project: Searching for WIMPS with a Directional Detector

    Get PDF
    A low pressure time projection chamber for the detection of WIMPs is discussed. Discrimination against Compton electron background in such a device should be very good, and directional information about the recoil atoms would be obtainable. If a full 3-D reconstruction of the recoil tracks can be achieved, Monte Carlo studies indicate that a WIMP signal could be identified with high confidence from as few as 30 detected WIMP-nucleus scattering events.Comment: 5 pages, 3 figures. Presented at Dark 98, Heidelberg, July 1998, and to appear in conference proceeding

    The Supersymmetric Origin of Matter

    Full text link
    The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Due to the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron Electric Dipole Moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b -> s gamma decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.Comment: 30 pages, 14 figure

    Measurement of the Scintillation Efficiency of Na Recoils in NaI(Tl) down to 10 keV Nuclear Recoil Energy relevant to Dark Matter Searches

    Full text link
    We present preliminary results of measurements of the quenching factor for Na recoils in NaI(Tl) at room temperature, made at a dedicated neutron facility at the University of Sheffield. Measurements have been performed with a 2.45 MeV mono-energetic neutron generator in the energy range from 10 keV to 100 keV nuclear recoil energy. A BC501A liquid scintillator detector was used to tag neutrons. Cuts on pulse-shape discrimination from the BC501A liquid scintillator detector and neutron time-of-flight were performed on pulses recorded by a digitizer with a 2 ns sampling time. Measured quenching factors range from 19% to 26%, in agreement with other experiments. From pulse-shape analysis, a mean time of pulses from electron and nuclear recoils are compared down to 2 keV electron equivalent energy.Comment: to appear in Proc. 6th Int. Workshop on the Identification of Dark Matter, 11-16 September 2006, Rhodes, Greece; 6 pages, 4 figures; corrected preliminary theoretical estimation curve plotted in figure

    Measurement of the quenching factor of Na recoils in NaI(Tl)

    Full text link
    Measurements of the quenching factor for sodium recoils in a 5 cm diameter NaI(Tl) crystal at room temperature have been made at a dedicated neutron facility at the University of Sheffield. The crystal has been exposed to 2.45 MeV mono-energetic neutrons generated by a Sodern GENIE 16 neutron generator, yielding nuclear recoils of energies between 10 and 100 keVnr. A cylindrical BC501A detector has been used to tag neutrons that scatter off sodium nuclei in the crystal. Cuts on pulse shape and time of flight have been performed on pulses recorded by an Acqiris DC265 digitiser with a 2 ns sampling time. Measured quenching factors of Na nuclei range from 19% to 26% in good agreement with other experiments, and a value of 25.2 \pm 6.4% has been determined for 10 keV sodium recoils. From pulse shape analysis, the mean times of pulses from electron and nuclear recoils have been compared down to 2 keVee. The experimental results are compared to those predicted by Lindhard theory, simulated by the SRIM Monte Carlo code, and a preliminary curve calculated by Prof. Akira Hitachi.Comment: 21 pages, 13 figure

    First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches

    Get PDF
    We present first evidence for the so-called Head-Tail asymmetry signature of neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the 1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils induced by Weakly Interacting Massive Particle (WIMPs) but one where the differential ionization is poorly understood. We show that the distribution of recoil energies and directions induced here by Cf-252 neutrons matches well that expected from massive WIMPs. The results open a powerful new means of searching for a galactic signature from WIMPs.Comment: 4 pages, 6 figures, 1 tabl

    The DRIFT Dark Matter Experiments

    Full text link
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
    corecore