1,969 research outputs found

    Prominence eruption initiated by helical kink-instability of an embedded flux rope

    Full text link
    We study the triggering mechanism of a limb-prominence eruption and the associated coronal mass ejection near AR 12342 using SDO and LASCO/SOHO observations. The prominence is seen with an embedded flux thread (FT) at one end and bifurcates from the middle to a different footpoint location. The morphological evolution of the FT is similar to an unstable flux rope (FR), which we regard as prominence embedded FR. The FR twist exceeds the critical value. In addition, the morphology of the prominence plasma in 304\AA~images marks the helical nature of the magnetic skeleton with a total of 2.96 turns along arc length. The potential field extrapolation model indicates that the critical height of the background magnetic field gradient falls within the inner corona (105Mm) consistent with the extent of coronal plasma loops. These results suggest that the helical kink instability in the embedded FR caused the slow rise of the prominence to a height of the torus instability domain. Moreover, the differential emission measure analysis unveils heating of the prominence plasma to coronal temperatures during eruption, suggesting a reconnection-related heating underneath the upward rising embedded FR. The prominence starts with a slow rise motion of 10km/s, followed by fast and slow acceleration phases having an average acceleration of 28.9m/s228.9m/s^2, 2.4m/s22.4m/s^2 in C2, C3 field of view respectively. As predicted by previous numerical simulations, the observed synchronous kinematic profiles of the CME leading edge and the core supports the involved FR instability in the prominence initiation.Comment: Accepted in ApJ, 13 pages, 9 figure

    PHYS 102-006: General Physics

    Get PDF

    PHYS 102-004: General Physics

    Get PDF

    PHYS 102-001: General Physics

    Get PDF

    PHYS 102-004: General Physics

    Get PDF

    PHYS 102-003: General Physics

    Get PDF

    Statistical study of magnetic non-potential measures in confined and eruptive flares

    Get PDF
    Using the HMI/SDO vector magnetic field observations, we studied the relation of degree of magnetic non-potentiality with the observed flare/CME in active regions. From a sample of 77 flare/CME cases, we found a general relation that degree of non-potentiality is positively correlated with the flare strength and the associated CME speeds. Since the magnetic flux in the flare-ribbon area is more related to the reconnection, we trace the strong gradient polarity inversion line (SGPIL), Schrijver's R value manually along the flare-ribbon extent. Manually detected SGPIL length and R values show higher correlation with the flare strength and CME speed than the automatically traced values without flare-ribbon information. It highlights the difficulty of predicting the flare strength and CME speed a priori from the pre-flare magnetograms used in flare prediction models. Although the total, potential magnetic energy proxies show weak positive correlation, the decrease in free energy exhibits higher correlation (0.56) with the flare strength and CME speed. Moreover, the eruptive flares have threshold of SGPIL length (31Mm), R value (1.6×10191.6\times10^{19}Mx), free-energy decrease (2×10312\times10^{31}erg) compared to confined ones. In 90\% eruptive flares, the decay-index curve is steeper reaching ncrit=1.5n_{crit}=1.5 within 42Mm, whereas it is beyond 42Mm in >70>70% confined flares. While indicating the improved statistics in the predictive capability of the AR eruptive behavior with the flare-ribbon information, our study provides threshold magnetic properties for a flare to be eruptive.Comment: 12 pages, 9 figures, accepted in Ap

    Formation and eruption of sigmoidal structure from a weak field region of NOAA 11942

    Get PDF
    Using observations from Solar Dynamics Observatory, we studied an interesting example of a sigmoid formation and eruption from small-scale flux canceling regions of active region (AR) 11942. Analysis of HMI and AIA observations infer that initially the AR is compact and bipolar in nature, evolved to sheared configuration consisting of inverse J-shaped loops hosting a filament channel over a couple of days. By tracking the photospheric magnetic features, shearing and converging motions are observed to play a prime role in the development of S-shaped loops and further flux cancellation leads to tether-cutting reconnection of J-loops. This phase is co-temporal with the filament rise motion followed by sigmoid eruption at 21:32 UT on January 6. The flux rope rises in phases of slow (vavg_{avg} = 26 km~s−1^{-1}) and fast (aavg_{avg}= 55 ms−2^{-2}) rise motion categorizing the CME as slow with an associated weak C1.0 class X-ray flare. The flare ribbon separation velocity peaks at around peak time of the flare at which maximum reconnection rate (2.14 Vcm−1^{-1}) occurs. Further, the EUV light-curves of 131, 171\AA~have delayed peaks of 130 minutes compared to 94\AA~and is explained by differential emission measure. Our analysis suggests that the energy release is proceeded in a much long time duration, manifesting the onset of filament rise and eventual eruption driven by converging and canceling flux in the photosphere. Unlike strong eruption events, the observed slow CME and weak flare are indications of slow runway tether-cutting reconnection where most of the sheared arcade is relaxed during the extended post phase of the eruption.Comment: Accepted for Publication in The Astrophysical journal on 19 February, 2019. It has 17 pages including 12 figure
    • …
    corecore