1,753 research outputs found

    Strong vortex-antivortex fluctuations in the type II superconducting film

    Full text link
    The small size vortex-antivortex pairs proliferation in type II superconducting film is considered for the wide interval of temperatures below Tc. The corresponding contribution to free energy is calculated. It is shown that these fluctuations give the main contribution to the heat capacity of the film both at low temperatures and in the vicinity of transition

    How the Phase Slips in a Current-Biased Narrow Superconducting Stripe?

    Full text link
    The theory of current transport in a narrow superconducting channel accounting for thermal fluctuations is revisited. The value of voltage appearing in the sample is found as the function of temperature (close to transition temperature T−TcT-T_{\mathrm{c}} ≪Tc\ll T_{\mathrm{c}}) and bias current J<JcJ<J_{\mathrm{c}} ( JcJ_{\mathrm{c}} is a value of critical current calculated in the framework of the BCS approximation, neglecting thermal fluctuations). It is shown that the careful analysis of vortex crossing of the stripe results in considerable increase of the activation energy.Comment: 6 pages, 2 figure

    Metal-Insulator transition in the Generalized Hubbard model

    Full text link
    We present the exact ground-state wave function and energy of the generalized Hubbard model, subjected to the condition that the number of double occupied sites is conserved, for a wide, physically relevant range of parameters. For one hole and one double occupied site the existence of the ferromagnetic ground-state is proved which allow one to determine the critical value of the on-site repulsion corresponding to the point of metal-insulator transition. For the one dimensional model the exact solution for special values of the parameters is obtained.Comment: 20 pages, LaTex. Mod.Phys.Lett.B 7 (1993) 1397; Journal of Physics: Condensed Matter (to appear

    Nuclear magnetic susceptibility of metals with magnetic impurities

    Full text link
    We consider the contribution of magnetic impurities to the nuclear magnetic susceptibility χ\chi and to the specific heat CC of a metal. The impurity contribution to the magnetic susceptibility has a 1/T21/T^2 behaviour, and the impurity contribution to the specific heat has a 1/T1/T behaviour, both in an extended region of temperatures TT. In the case of a dirty metal the RKKY interaction of nuclear spins and impurity spins is suppressed for low temperatures and the main contribution to CC and χ\chi is given by their dipole-dipole interaction.Comment: 9 pages, 4 figures, REVTE

    Strong coupling in the Kondo problem in the low-temperature region

    Full text link
    The magnetic field dependence of the average spin of a localized electron coupled to conduction electrons with an antiferromagnetic exchange interaction is found for the ground state. In the magnetic field range μH∼0.5Tc\mu H\sim 0.5 T_c (TcT_c is the Kondo temperature) there is an inflection point, and in the strong magnetic field range μH≫Tc\mu H\gg T_c, the correction to the average spin is proportional to (Tc/μH)2(T_c/\mu H)^2. In zero magnetic field, the interaction with conduction electrons also leads to the splitting of doubly degenerate spin impurity states

    Wire GEM detector

    Full text link
    A wire GEM (WGEM) detector with a gas gap between meshes was constructed. The detector provides the amplification 5x10E5 for the gas mixture of Ar +20% CO2 at atmospheric pressure. As compared with well-known GEM detectors produced by perforation the plastic plate metalized on both sides the WGEM does not suffer from breakdowns between its electrodes and the effect of accumulation of charges on holes walls is absent. As a result the WGEM has high reliability and stability.Comment: Presented at the RD51 Collaboration Meeting, CERN, November 2009, submitted to the Prib. Tech. Expe

    Diagrammatic calculation of energy spectrum of quantum impurity in degenerate Bose-Einstein condensate

    Full text link
    In this paper we considered a quantum particle moving through delute Bose-Einstein condensate at zero temperature. In our formulation the impurity particle interacts with the gas of uncoupled Bogoliubov's excitations. We constructed the perturbation theory for the Green's function of the impurity particle with respect to the impurity-condensate interaction employing the coherent-state path integral approach. The perturbative expansion for the Green's function is resumed into the expansion for its poles with the help of the diagrammatic technique developed in this work. The dispersion relation for the impurity clothed by condensate excitations is obtained and effective mass is evaluated beyond the Golden rule approximation

    RETGEM with polyvinylchloride (PVC) electrodes

    Full text link
    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.Comment: Presented at the RD51 Collaboration Meeting, CERN, November 200
    • …
    corecore