6,796 research outputs found

    Optical spectroscopy study of Nd(O,F)BiS2 single crystals

    Full text link
    We present an optical spectroscopy study on F-substituted NdOBiS2_2 superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping level of x=0.5, but very close to the value based on a doping level of 7%\% of itinerant electrons per Bi site as determined by ARPES experiment. The energy scales of the interband transitions are also well reproduced by the first-principles calculations. The results suggest an absence of correlation effect in the compound, which essentially rules out the exotic pairing mechanism for superconductivity or scenario based on the strong electronic correlation effect. The study also reveals that the system is far from a CDW instability as being widely discussed for a doping level of x=0.5.Comment: 5 pages, 5 figure

    Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

    Full text link
    In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure

    Charge dynamics in the phase string model for high-Tc superconductors

    Full text link
    An understanding of the anomalous charge dynamics in the high-Tc cuprates is obtained based on a model study of doped Mott insulators. The high-temperature optical conductivity is found to generally have a two-component structure: a Drude like part followed by a mid-infrared band. The scattering rate associated with the Drude part exhibits a linear-temperature dependence over a wide range of high temperature, while the Drude term gets progressively suppressed below a characteristic energy of magnetic origin as the system enters the pseudogap phase. The high-energy optical conductivity shows a resonancelike feature in an underdoped case and continuously evolves into a 1/\omega tail at higher doping, indicating that they share the same physical origin. In particular, such a high-energy component is closely correlated with the \omega-peak structure of the density-density correlation function at different momenta, in systematic consistency with exact diagonalization results based on the t-J model. The underlying physics is attributed to the high-energy spin-charge separation in the model, in which the "mode coupling" responsible for the anomalous charge properties is not between the electrons and some collective mode but rather between new charge carriers, holons, and a novel topological gauge field controlled by spin dynamics, as the consequence of the strong short-range electron-electron Coulomb repulsion in the doped Mott insulator.Comment: 19 pages, 13 figures; final version to appear in Phys. Rev.

    Mean-Field Description of Phase String Effect in the tJt-J Model

    Full text link
    A mean-field treatment of the phase string effect in the tJt-J model is presented. Such a theory is able to unite the antiferromagnetic (AF) phase at half-filling and metallic phase at finite doping within a single theoretical framework. We find that the low-temperature occurrence of the AF long range ordering (AFLRO) at half-filling and superconducting condensation in metallic phase are all due to Bose condensations of spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-bond (RVB) pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This theory also allows an underdoped metallic regime where the Bose condensation of spinons can still exist. Even though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with short-ranged spin ordering. We discuss some characteristic experimental consequences for those different metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.Comment: 18 pages, five figure

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the tJt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    Stability of antiphase line defects in nanometer-sized boron-nitride cones

    Full text link
    We investigate the stability of boron nitride conical sheets of nanometer size, using first-principles calculations. Our results indicate that cones with an antiphase boundary (a line defect that contains either B-B or N-N bonds) can be more stable than those without one. We also find that doping the antiphase boundaries with carbon can enhance their stability, leading also to the appearance of localized states in the bandgap. Among the structures we considered, the one with the smallest formation energy is a cone with a carbon-modified antiphase boundary that presents a spin splitting of about 0.5 eV at the Fermi level.Comment: 5 two-column pages with 2 figures Accepted for publication in Physical Review B (vol 70, 15 Nov.

    3,3,6,6-Tetrakis­(hydroxy­meth­yl)-1,2,4,5-tetra­zinane tetra­hydrate

    Get PDF
    In the title compound, C6H16N4O4·4H2O, the tetra­zinane mol­ecule lies across an inversion centre. The tetra­zinane ring adopts a chair conformation, and all imino H atoms occupy axial positions. In the crystal, adjacent mol­ecules are linked through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds with water mol­ecules generating a three-dimensional network

    Exploring the action landscape with trial world-lines

    Full text link
    The Hamilton action principle, also known as the principle of least action, and Lagrange equations are an integral part of advanced undergraduate mechanics. At present, substantial efforts are ongoing to suitably incorporate the action principle in introductory physics courses. Although the Hamilton principle is oft stated as "the action for any nearby trial world-line is greater than the action for the classical world-line", the landscape of action in the space of world-lines is rarely explored. Here, for three common problems in introductory physics - a free particle, a uniformly accelerating particle, and a simple harmonic oscillator - we present families of trial world-lines, characterized by a few parameters, that evolve continuously from their respective classical world-lines. With explicit analytical expressions available for the action, they permit a graphical visualization of the action landscape in the space of nearby world-lines. Although these trial world-lines form only a subset of the space of all nearby world-lines, they provide a pedagogical tool that complements the traditional Lagrange equation approach and is well-suited for advanced undergraduate students.Comment: 9 pages, 6 figures, significant structural revisio

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Frustration induced Raman scattering in CuGeO_3

    Full text link
    We present experimental data for the Raman intensity in the spin-Peierls compound CuGeO_3 and theoretical calculations from a one-dimensional frustrated spin model. The theory is based on (a) exact diagonalization and (b) a recently developed solitonic mean field theory. We find good agreement between the 1D-theory in the homogeneous phase and evidence for a novel dimerization of the Raman operator in the spin-Peierls state. Finally we present evidence for a coupling between the interchain exchange, the spin-Peierls order parameter and the magnetic excitations along the chains.Comment: Phys. Rev. B, Rapid Comm, in Pres
    corecore