725 research outputs found
Observing Quark-Gluon Plasma with Strange Hadrons
We review the methods and results obtained in an analysis of the experimental
heavy ion collision research program at nuclear beam energy of 160-200A GeV. We
study strange, and more generally, hadronic particle production experimental
data. We discuss present expectations concerning how these observables will
perform at other collision energies. We also present the dynamical theory of
strangeness production and apply it to show that it agrees with available
experimental results. We describe strange hadron production from the
baryon-poor quark-gluon phase formed at much higher reaction energies, where
the abundance of strange baryons and antibaryons exceeds that of nonstrange
baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table
Integrating Data on Ethnicity, Geography, and Conflict
This article introduces the new Family of Ethnic Power Relations (EPR) data sets, version 2014, which is the latest in a series of data sets on ethnicity that have stimulated civil war research in the past decade. The EPR Family provides data on ethnic groups’ access to state power, their settlement patterns, links to rebel organizations, transborder ethnic kin relations, and intraethnic cleavages. The new 2014 version does not only extend the data set’s temporal coverage from 2009 to 2013, but it also offers several new features, such as a new measure of regional autonomy that is independent of national-level executive power and a new data set component coding intraethnic identities and cleavages. Moreover, for the first time, detailed documentation of the EPR data is provided through the EPR Atlas. This article presents these novelties in detail and compares the EPR Family 2014 to the most relevant alternative data sets on ethnicity
Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams
Phase Transitions Driven by Vortices in 2D Superfluids and Superconductors: From Kosterlitz-Thouless to 1st Order
The Landau-Ginzburg-Wilson hamiltonian is studied for different values of the
parameter which multiplies the quartic term (it turns out that this
is equivalent to consider different values of the coherence length in
units of the lattice spacing ). It is observed that amplitude fluctuations
can change dramatically the nature of the phase transition: for small values of
(), instead of the smooth Kosterlitz-Thouless transition
there is a {\em first order} transition with a discontinuous jump in the vortex
density and a larger non-universal drop in the helicity modulus. In
particular, for sufficiently small (), the density of
bound pairs of vortex-antivortex below is so low that, drops to zero
almost for all temperature .Comment: 8 pages, 5 .eps figure
Coulomb Effect: A Possible Probe for the Evolution of Hadronic Matter
Electromagnetic field produced in high-energy heavy-ion collisions contains
much useful information, because the field can be directly related to the
motion of the matter in the whole stage of the reaction. One can divide the
total electromagnetic field into three parts, i.e., the contributions from the
incident nuclei, non-participating nucleons and charged fluid, the latter
consisting of strongly interacting hadrons or quarks. Parametrizing the
space-time evolution of the charged fluid based on hydrodynamic model, we study
the development of the electromagnetic field which accompanies the high-energy
heavy-ion collisions. We found that the incident nuclei bring a rather strong
electromagnetic field to the interaction region of hadrons or quarks over a few
fm after the collision. On the other hand, the observed charged hadrons'
spectra are mostly affected (Coulomb effect) by the field of the charged fluid.
We compare the result of our model with experimental data and found that the
model reproduces them well. The pion yield ratio pi^-/pi+ at a RHIC energy,
Au+Au 100+100 GeV/nucleon, is also predicted.Comment: 23 pages, RevTex, 19 eps figures, revised versio
Possible first order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores
We study the two-dimensional Ginzburg-Landau model of a neutral superfluid in
the vicinity of the vortex unbinding transition. The model is mapped onto an
effective interacting vortex gas by a systematic perturbative elimination of
all fluctuating degrees of freedom (amplitude {\em and} phase of the order
parameter field) except the vortex positions. In the Coulomb gas descriptions
derived previously in the literature, thermal amplitude fluctuations were
neglected altogether. We argue that, if one includes the latter, the vortices
still form a two- dimensional Coulomb gas, but the vortex fugacity can be
substantially raised. Under the assumption that Minnhagen's generic phase
diagram of the two- dimensional Coulomb gas is correct, our results then point
to a first order transition rather than a Kosterlitz-Thouless transition,
provided the Ginzburg-Landau correlation length is large enough in units of a
microscopic cutoff length for fluctuations. The experimental relevance of these
results is briefly discussed. [Submitted to J. Stat. Phys.]Comment: 36 pages, LaTeX, 6 figures upon request, UATP2-DB1-9
Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics
Some questions arising in the application of the thermal model to hadron
production in heavy ion collisions are studied. We do so by applying the
thermal model of hadron production to particle yields calculated by the
microscopic transport model RQMD(v2.3). We study the bias of incomplete
information about the final hadronic state on the extraction of thermal
parameters.It is found that the subset of particles measured typically in the
experiments looks more thermal than the complete set of stable particles. The
hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3)
are the multistrange baryons and antibaryons. We also looked at the influence
of rapidity cuts on the extraction of thermal parameters and found that they
lead to different thermal parameters and larger disagreement between the RQMD
yields and the thermal model.Comment: 12 pages, 2 figures, uses REVTEX, only misprint and stylistic
corrections, to appear in Physical Review
Recommended from our members
Data assimilation with correlated observation errors: experiments with a 1-D shallow water model
Remote sensing observations often have correlated errors, but the correlations are typically ignored in data assimilation for numerical weather prediction. The assumption of zero correlations is often used with data thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative approach to dealing with observation error correlations is needed. In this article, we consider several approaches to approximating observation error correlation matrices: diagonal approximations, eigendecomposition approximations and Markov matrices. These approximations are applied in incremental variational assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate correlation structure in the observation error covariance matrix than to incorrectly assume error independence. Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include error correlation structure in a variational data assimilation algorithm
Semi-Inclusive Lambda and Kshort Production in p-Au Collisions at 17.5 GeV/c
The first detailed measurements of the centrality dependence of strangeness
production in p-A collisions are presented. Lambda and Kshort dn/dy
distributions from 17.5 GeV/c p-Au collisions are shown as a function of "grey"
track multiplicity and the estimated number of collisions, nu, made by the
proton. The nu dependence of the Lambda yield deviates from a scaling of p-p
data by the number of participants, increasing faster than this scaling for
nu<=5 and saturating for larger nu. A slower growth in Kshort multiplicity with
nu is observed, consistent with a weaker nu dependence of K-Kbar production
than Y-K production.Comment: 5 pages, 3 figures, formatted with RevTex, current version has
enlarged figure catpion
Structural Instability in Polyacene : A Projector Quantum Monte Carlo Study
We have studied polyacene within the Hubbard model to explore the effect of
electron correlations on the Peierls' instability in a system marginally away
from one-dimension. We employ the projector quantum Monte Carlo method to
obtain ground state estimates of the energy and various correlation functions.
We find strong similarities between polyacene and polyacetylene which can be
rationalized from the real-space valence-bond arguments of Mazumdar and Dixit.
Electron correlations tend to enhance the Peierls' instability in polyacene.
This enhancement appears to attain a maximum at and the maximum
shifts to larger values when the alternation parameter is increased. The system
shows no tendency to destroy the imposed bond-alternation pattern, as evidenced
by the bond-bond correlations. The cis- distortion is seen to be favoured over
the trans- distortion. The spin-spin correlations show that undistorted
polyacene is susceptible to a SDW distortion for large interaction strength.
The charge-charge correlations indicate the absence of a CDW distortion for the
parameters studied.Comment: 13 pages, 10 figures available on reques
- …