4,535 research outputs found

    A New Preventive for B L O A T

    Get PDF
    New product called poloxalene has been tested at Iowa State and Kansas State Universities and is the most effective preventive of legume bloat yet developed. It\u27s now being marketed commercially

    The Role of Control in Intimate Partner Violence: A Study in Dutch Forensic Outpatients

    Get PDF
    Johnson argued that coercive control is crucial in explaining heterogeneity in intimate partner violence, with such violence being more frequent, less reciprocal, and more often male-to-female aggression when it serves to exercise control over the partner. We assessed 280 Dutch forensic outpatients who had recently engaged in intimate partner violence on nonaggressive coercive control. Control showed significant, small to moderate, associations with more frequent past year acts of psychological aggression, physical assault, and sexual coercion and more frequently resulted in partner injury. Control was unrelated to reciprocity of partner violence. High controlling violence was enacted mostly, but not exclusively by men. Overall, while perhaps not having a uniquely strong association, our findings provide partial support for the role of coercive control in intimate partner violence and suggest it may benefit intimate partner violence risk assessment.</p

    Observation of Three-dimensional Long-range Order in Smaller Ion Coulomb Crystals in an rf Trap

    Full text link
    Three-dimensional long-range ordered structures in smaller and near-spherically symmetric Coulomb crystals of ^{40}Ca^+ ions confined in a linear rf Paul trap have been observed when the number of ions exceeds ~1000 ions. This result is unexpected from ground state molecular dynamics (MD) simulations, but found to be in agreement with MD simulations of metastable ion configurations. Previously, three-dimensional long-range ordered structures have only been reported in Penning traps in systems of ~50,000 ions or more.Comment: 5 pages; 4 figures; to appear in Phys. Rev. Lett.; changed content

    Fuel-Supply-Limited Stellar Relaxation Oscillations: Application to Multiple Rings around AGB Stars and Planetary Nebulae

    Full text link
    We describe a new mechanism for pulsations in evolved stars: relaxation oscillations driven by a coupling between the luminosity-dependent mass-loss rate and the H fuel abundance in a nuclear-burning shell. When mass loss is included, the outward flow of matter can modulate the flow of fuel into the shell when the stellar luminosity is close to the Eddington luminosity LEddL_{\rm Edd}. When the luminosity drops below LEddL_{\rm Edd}, the mass outflow declines and the shell is re-supplied with fuel. This process can be repetitive. We demonstrate the existence of such oscillations and discuss the dependence of the results on the stellar parameters. In particular, we show that the oscillation period scales specifically with the mass of the H-burning relaxation shell (HBRS), defined as the part of the H-burning shell above the minimum radius at which the luminosity from below first exceeds the Eddington threshold at the onset of the mass loss phase. For a stellar mass M_*\sim 0.7\Msun, luminosity L_*\sim 10^4\Lsun, and mass loss rate |\dot M|\sim 10^{-5}\Msun yr1^{-1}, the oscillations have a recurrence time 1400\sim 1400 years 57τfsm\sim 57\tau_{\rm fsm}, where τfsm\tau_{\rm fsm} is the timescale for modulation of the fuel supply in the HBRS by the varying mass-loss rate. This period agrees with the \sim 1400-year period inferred for the spacings between the shells surrounding some planetary nebulae, and the the predictied shell thickness, of order 0.4 times the spacing, also agrees reasonably well.Comment: 15 pages TeX, 1 ps figure submitted to Ap

    Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles

    Get PDF
    We present an analytical proof and numerical demonstrations of the equivalence of the correlation energy from particle-particle random phase approximation (pp-RPA) and ladder-couple-cluster-doubles (ladder-CCD). These two theories reduce to the identical algebraic matrix equation and correlation energy expressions, under the assumption that the pp-RPA equation is stable. The numerical examples illustrate that the correlation energy missed by pp-RPA in comparison with couple-cluster single and double is largely canceled out when considering reaction energies. This theoretical connection will be beneficial to future pp-RPA studies based on the well established couple cluster theory

    Collective fluctuations in networks of noisy components

    Full text link
    Collective dynamics result from interactions among noisy dynamical components. Examples include heartbeats, circadian rhythms, and various pattern formations. Because of noise in each component, collective dynamics inevitably involve fluctuations, which may crucially affect functioning of the system. However, the relation between the fluctuations in isolated individual components and those in collective dynamics is unclear. Here we study a linear dynamical system of networked components subjected to independent Gaussian noise and analytically show that the connectivity of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in general directed networks including scale-free networks, the fluctuations decrease more slowly with the system size than the standard law stated by the central limit theorem. They even remain finite for a large system size when global directionality of the network exists. Moreover, such nontrivial behavior appears even in undirected networks when nonlinear dynamical systems are considered. We demonstrate it with a coupled oscillator system.Comment: 5 figure

    Disentangling the effects of age and mild traumatic brain injury on brain network connectivity:A resting state fMRI study

    Get PDF
    INTRODUCTION: Cognitive complaints are common shortly after mild traumatic brain injury (mTBI) but may persist up to years. Age-related cognitive decline can worsen these symptoms. However, effects of age on mTBI sequelae have scarcely been investigated. METHODS: Fifty-four mTBI patients (median age: 35 years, range 19-64 years, 67% male) and twenty age- and sex-matched healthy controls were studied using resting state functional magnetic resonance imaging in the sub-acute phase. Independent component analysis was used to identify intrinsic connectivity networks (ICNs). A multivariate approach was adopted to evaluate the effects of age and group on the ICNs in terms of (static) functional network connectivity (FNC), intensities of spatial maps (SMs) and time-course spectral power (TC). RESULTS: We observed significant age-related changes for a) FNC: changes between 10 pairs of ICNs, mostly involving the default mode (DM) and/or the cognitive-control (CC) domains; b) SMs: intensity decrease in clusters across three domains and intensity increase in clusters across two domains, including the CC but not the DM and c) TC: spectral power decrease within the 0-0.15 Hz range and increase within the 0.20-0.25 Hz range for increasing age within networks located in frontal areas, including the anterior DM. Groups only differed for TC within the 0.065-0.10 Hz range in the cerebellar ICN and no age × group interaction effect was found. CONCLUSIONS: We showed robust effects of age on connectivity between and within ICNs that are associated with cognitive functioning. Differences between mTBI patients and controls were only found for activity in the cerebellar network, increasingly recognized to participate in cognition. Our results suggest that to allow for capturing the true effects related to mTBI and its effects on cognitive functioning, age should be included as a covariate in mTBI studies, in addition to age-matching groups

    Wean Dairy Calves Early

    Get PDF
    Dairy calves can be weaned from milk at 1 month of age by feeding a palatable, nutritious starter. Here\u27s more about the early weaning program\u27s secret - getting the calves on starter at an early age

    The Development of a New Scale to Measure Food Insecurity Among Older Adults Using the International Classification of Functioning, Disability, and Health (ICF) Framework

    Get PDF
    Background: Older adults face different barriers to accessing adequate food, and none of the current food security scales address the unique issues that aging could present to food security among this population. Purpose: This study aims to understand the components of nutrition functioning in relation to food insecurity among older adults to develop a food insecurity screening tool specific to the older adult population. Methods: Cross-sectional qualitative study with semi-structured interviews. The interviews occurred via Google Voice and were simultaneously recorded using Zoom. Two researchers coded transcriptions from interview audio recordings separately, and thematic analysis based on the International Classification of Functioning, Disability, and Health (ICF) was used to analyze the data. The findings were deliberated between all the researchers, and the final themes, subthemes, and representative quotes were mutually agreed upon. Results: Twenty-three older adults living in independent senior living facilities were interviewed. Nine themes (transportation, access/variety, housing, mobility & aging, preparing food, interpersonal relationship, food assistance, dentition/ingestion/digestion, health conditions) and twenty-two subthemes were identified. The results demonstrated that lack of transportation, interpersonal relationships, health-related conditions, and financial constraints were this population\u27s principal barriers to accessing and preparing adequate food. Discussion: Food insecurity among older adults is a multi-dimension issue. A new scale to measure food insecurity among older adults was created to provide a more accurate assessment of food security risk in this population. Future research should validate this scale in different settings

    Selecting a single orientation for millimeter sized graphene sheets

    Get PDF
    We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices
    corecore