1,250 research outputs found

    Curvature in causal BD-type inflationary cosmology

    Full text link
    We study a closed model of the universe filled with viscous fluid and quintessence matter components in a Brans-Dicke type cosmological model. The dynamical equations imply that the universe may look like an accelerated flat Friedmann-Robertson-Walker universe at low redshift. We consider here dissipative processes which follow a causal thermodynamics. The theory is applied to viscous fluid inflation, where accepted values for the total entropy in the observable universe is obtained.Comment: 11 pages, revtex 4. For a festschrift honoring Alberto Garcia. To be publishen in Gen. Rel. Gra

    An accelerated closed universe

    Full text link
    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, ΩM\Omega_M and ΩΛ\Omega_{\Lambda}, and of the associated density parameter ΩQ\Omega_Q related to the quintessence scalar field QQ.Comment: 11 pages. For a festschrift honoring Alberto Garcia. To appear in Gen. Rel. Gra

    Dynamics of a Tonks-Girardeau gas released from a hard-wall trap

    Full text link
    We study the expansion dynamics of a Tonks-Girardeau gas released from a hard wall trap. Using the Fermi-Bose map, the density profile is found analytically and shown to differ from that one of a classical gas in the microcanonical ensemble even at macroscopic level, for any observation time larger than a critical time. The relevant time scale arises as a consequence of fermionization.Comment: 4 pages, 6 figure

    Shortcuts to adiabaticity in a time-dependent box

    Full text link
    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential analogous to those used in soliton control. The method is extended to a broad family of many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.Comment: 6 pp, 4 figures, typo in Eq. (6) fixe

    V-Shape Liquid Crystal-Based Retromodulator Air to Ground Optical Communications

    Get PDF
    This paper describes the use of a 2D liquid crystal retro-modulator as a free space, wireless, optical link. The retro-modulator is made up of a retro-reflecting cornercube onto which 2 cascaded V-shape smectics liquid crystal modulators are mounted. The communication link differs with respect to more conventional optical links in not using amplitude (nor frequency) modulation, but instead state-of-polarisation (SOP) modulation known as Polarisation Shift Keying (PolSK). PolSK has the advantage over amplitude modulation, that it is less sensitive to changes in the visibility of the atmosphere, and increases inherently the bandwidth of the link. The implementation of PolSK both in liquid crystal based and in retro-modulated communication are novelties

    Curvature of the universe and the dark energy potential

    Get PDF
    The flatness of an accelerating universe model (characterized by a dark energy scalar field χ\chi) is mimicked from a curved model that is filled with, apart from the cold dark matter component, a quintessencelike scalar field QQ. In this process, we characterize the original scalar potential V(Q)V(Q) and the mimicked scalar potential V(χ)V(\chi) associated to the scalar fields QQ and χ\chi, respectively. The parameters of the original model are fixed through the mimicked quantities that we relate to the present astronomical data, such that the equation state parameter wχw_{_{\chi}} and the dark energy density parameter Ωχ\Omega_{\chi}.Comment: References 7 and 8 have been corrected: (7) Riess et al. 1998, AJ, 116, 1009 and (8) Perlmutter et al. 1999, ApJ, 517, 56

    Matter-wave diffraction in time with a linear potential

    Full text link
    Diffraction in time of matter waves incident on a shutter which is removed at time t=0t=0 is studied in the presence of a linear potential. The solution is also discussed in phase space in terms of the Wigner function. An alternative configuration relevant to current experiments where particles are released from a hard wall trap is also analyzed for single-particle states and for a Tonks-Girardeau gas.Comment: 11 pages, 6 figure

    Accelerated closed universes in scalar-tensor theories

    Full text link
    We describe an accelerating universe model in the context of a scalar-tensor theory. This model is intrinsically closed, and is filled with quintessence-like scalar field components, in addition to the Cold Dark Matter component. With a background geometry specified by the Friedman-Robertson-Walker metric, we establish conditions under which this closed cosmological model, described in a scalar-tensor theory, may look flat in a genuine Jordan-Brans-Dicke theory. Both models become indistinguishable at low enough redshift.Comment: 8 pages, 4 figures, in press (CQG
    • …
    corecore