412 research outputs found

    Power law correlations in galaxy distribution and finite volume effects from the Sloan Digital Sky Survey Data Release Four

    Get PDF
    We discuss the estimation of galaxy correlation properties in several volume limited samples, in different sky regions, obtained from the Fourth Data Release of the Sloan Digital Sky Survey. The small scale properties are characterized through the determination of the nearest neighbor probability distribution. By using a very conservative statistical analysis, in the range of scales [0.5,~30] Mpc/h we detect power-law correlations in the conditional density in redshift space, with an exponent \gamma=1.0 \pm 0.1. This behavior is stable in all different samples we considered thus it does not depend on galaxy luminosity. In the range of scales [~30,~100] Mpc/h we find evidences for systematic unaveraged fluctuations and we discuss in detail the problems induced by finite volume effects on the determination of the conditional density. We conclude that in such range of scales there is an evidence for a smaller power-law index of the conditional density. However we cannot distinguish between two possibilities: (i) that a crossover to homogeneity (corresponding to \gamma=0 in the conditional density) occurs before 100 Mpc/h, (ii) that correlations extend to scales of order 100 Mpc/h (with a smaller exponent 0 < \gamma <1). We emphasize that galaxy distributions in these samples present large fluctuations at the largest scales probed, corresponding to the presence of large scale structures extending up to the boundaries of the present survey. Finally we discuss several differences between the behavior of the conditional density in mock galaxy catalogs built from cosmological N-body simulations and real data. We discuss some theoretical implications of such a fact considering also the super-homogeneous features of primordial density fields.Comment: 13 pages, 19 figures, to be publsihed in Astronomy and Astrophysic

    Cosmological Parameters from Velocities, CMB and Supernovae

    Get PDF
    We compare and combine likelihood functions of the cosmological parameters Omega_m, h and sigma_8, from peculiar velocities, CMB and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a "biasing" relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Lambda CDM cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 sigma level. This therefore justifies a joint analysis, in which we find a joint best fit point and 95 per cent confidence limits of Omega_m=0.28 (0.17,0.39), h=0.74 (0.64,0.86), and sigma_8=1.17 (0.98,1.37). In terms of the natural parameter combinations for these data sigma_8 Omega_m^0.6 = 0.54 (0.40,0.73), Omega_m h = 0.21 (0.16,0.27). Also for the best fit point, Q_rms-ps = 19.7 muK and the age of the universe is 13.2 Gyr.Comment: 8 pages, 5 figures. Submitted to MNRA

    Extension and estimation of correlations in Cold Dark Matter models

    Full text link
    We discuss the large scale properties of standard cold dark matter cosmological models characterizing the main features of the power-spectrum, of the two-point correlation function and of the mass variance. Both the real-space statistics have a very well defined behavior on large enough scales, where their amplitudes become smaller than unity. The correlation function, in the range 0<\xi(r)<1, is characterized by a typical length-scale r_c, at which \xi(r_c)=0, which is fixed by the physics of the early universe: beyond this scale it becomes negative, going to zero with a tail proportional to -(r^{-4}). These anti-correlations represent thus an important observational challenge to verify models in real space. The same length scale r_c characterizes the behavior of the mass variance which decays, for r>r_c, as r^{-4}, the fastest decay for any mass distribution. The length-scale r_c defines the maximum extension of (positively correlated) structures in these models. These are the features expected for the dark matter field: galaxies, which represent a biased field, however may have differences with respect to these behaviors, which we analyze. We then discuss the detectability of these real space features by considering several estimators of the two-point correlation function. By making tests on numerical simulations we emphasize the important role of finite size effects which should always be controlled for careful measurements.Comment: 18 pages, 27 figures, accepted for publication in Astronomy and Astrophysic

    A Local Hubble Bubble from SNe Ia?

    Full text link
    We analyze the monopole in the peculiar velocities of 44 Type Ia supernovae (SNe Ia) to test for a local void. The sample extends from 20 to 300 Mpc/h, with distances, deduced from light-curve shapes, accurate to ~6%. Assuming Omega_m=1 and Omega_lambda=0, the most significant deviation we find from the Hubble law is an outwards flow of (6.6+/-2.2)% inside a sphere of radius 70 Mpc/h as would be produced by a void of ~20% underdensity surrounded by a dense shell. This shell roughly coincides with the local Great Walls. Monte Carlo analyses, using Gaussian errors or bootstrap resampling, show the probability for chance occurrence of this result out of a pure Hubble flow to be ~2%. The monopole could be contaminated by higher moments of the velocity field, especially a quadrupole, which are not properly probed by the current limited sky coverage. The void would be less significant if Omega_m is low and Omega_lambda is high. It would be more significant if one outlier is removed from the sample, or if the size of the void is constrained a-priori. This putative void is not in significant conflict with any of the standard cosmological scenarios. It suggests that the Hubble constant as determined within 70 Mpc/h could be overestimated by ~6% and the local value of Omega may be underestimated by ~20%. While the present evidence for a local void is marginal in this data set, the analysis shows that the accumulation of SNe Ia distances will soon provide useful constraints on elusive and important aspects of regional cosmic dynamics.Comment: 21 pages, 3 figures. Slightly revised version. To appear in ApJ, 503, Aug. 20, 199

    Large Scale Power Spectrum from Peculiar Velocities Via Likelihood Analysis

    Get PDF
    The power spectrum (PS) of mass density fluctuations, independent of `biasing', is estimated from the Mark III catalog of peculiar velocities using Bayesian statistics. A parametric model is assumed for the PS, and the free parameters are determined by maximizing the probability of the model given the data. The method has been tested using detailed mock catalogs. It has been applied to generalized CDM models with and without COBE normalization. The robust result for all the models is a relatively high PS, with P(k)Ω1.2=(4.8±1.5)×103(Mpc/h)3P(k) \Omega^{1.2} = (4.8 \pm 1.5) \times 10^3 (Mpc/h)^3 at k=0.1h/Mpck=0.1 h/Mpc. An extrapolation to smaller scales using the different CDM models yields σ8Ω0.6=0.88±0.15\sigma_8 \Omega^{0.6} = 0.88 \pm 0.15. The peak is weakly constrained to the range 0.02k0.06h/Mpc0.02 \leq k \leq 0.06 h/Mpc. These results are consistent with a direct computation of the PS (Kolatt & Dekel 1996). When compared to galaxy-density surveys, the implied values for β\beta (Ω0.6/b\equiv \Omega^{0.6}/b) are of order unity to within 25%. The parameters of the COBE-normalized, flat CDM model are confined by a 90% likelihood contour of the sort Ωh50μnν=0.8±0.2\Omega h_{50}^\mu n^\nu = 0.8 \pm 0.2, where μ=1.3\mu = 1.3 and ν=3.4,2.0\nu = 3.4, 2.0 for models with and without tensor fluctuations respectively. For open CDM the powers are μ=0.95\mu = 0.95 and ν=1.4\nu = 1.4 (no tensor fluctuations). A Γ\Gamma-shape model free of COBE normalization yields only a weak constraint: Γ=0.4±0.2\Gamma = 0.4 \pm 0.2.Comment: 19 pages, 8 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Cosmological Density and Power Spectrum from Peculiar Velocities: Nonlinear Corrections and PCA

    Get PDF
    We allow for nonlinear effects in the likelihood analysis of galaxy peculiar velocities, and obtain ~35%-lower values for the cosmological density parameter Om and the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be a flat LCDM model (h=0.65, n=1, COBE) with only Om as a free parameter. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b=0.2 h/Mpc and fit a power law at k>k_b. This allows for independent matching of the nonlinear behavior and an unbiased fit in the linear regime. The analysis assumes Gaussian fluctuations and errors, and a linear relation between velocity and density. Tests using proper mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark3 and SFI data Om_m=0.32+-0.06 and 0.37+-0.09 respectively, with sigma_8*Om^0.6 = 0.49+-0.06 and 0.63+-0.08, in agreement with constraints from other data. The quoted 90% errors include cosmic variance. The improvement in likelihood due to the nonlinear correction is very significant for Mark3 and moderately so for SFI. When allowing deviations from LCDM, we find an indication for a wiggle in the power spectrum: an excess near k=0.05 and a deficiency at k=0.1 (cold flow). This may be related to the wiggle seen in the power spectrum from redshift surveys and the second peak in the CMB anisotropy. A chi^2 test applied to modes of a Principal Component Analysis (PCA) shows that the nonlinear procedure improves the goodness of fit and reduces a spatial gradient of concern in the linear analysis. The PCA allows addressing spatial features of the data and fine-tuning the theoretical and error models. It shows that the models used are appropriate for the cosmological parameter estimation performed. We address the potential for optimal data compression using PCA.Comment: 18 pages, LaTex, uses emulateapj.sty, ApJ in press (August 10, 2001), improvements to text and figures, updated reference

    Large scale correlations in galaxy clustering from the Two degree Field Galaxy Redshift Survey

    Full text link
    We study galaxy correlations from samples extracted from the 2dFGRS final release. Statistical properties are characterized by studying the nearest neighbor probability density, the conditional density and the reduced two-point correlation function. The result is that the conditional density has a power-law behavior in redshift space described by an exponent \gamma=0.8 \pm 0.2 in the interval from about 1 Mpc/h, the average distance between nearest galaxies, up to about 40 Mpc/h, corresponding to radius of the largest sphere contained in the samples. These results are consistent with other studies of the conditional density and are useful to clarify the subtle role of finite-size effects on the determination of the two-point correlation function in redshift and real spaceComment: 11 pages, 14 figures. Accepted for publication in Astronomy and Astrophysic

    A New Statistic for Analyzing Baryon Acoustic Oscillations

    Full text link
    We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations in a 1h^{-1}Gpc box at z=1. We compare these shifts with those obtained from the power spectrum and conclude that the results agree. This indicates that any distance measurements obtained from omega_0 and P(k) will be consistent with each other. We also show that it is possible to extract the same amount of acoustic information using either omega_0 or P(k) from equal volume surveys.Comment: 12 pages, 7 figures. ApJ accepted. Edit: Now updated with final accepted versio

    Constraining the LRG Halo Occupation Distribution using Counts-in-Cylinders

    Full text link
    The low number density of the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxies (LRGs) suggests that LRGs occupying the same dark matter halo can be separated from pairs occupying distinct dark matter halos with high fidelity. We present a new technique, Counts-in-Cylinders (CiC), to constrain the parameters of the satellite contribution to the LRG Halo-Occupation Distribution (HOD). For a fiber collision-corrected SDSS spectroscopic LRG subsample at 0.16 < z < 0.36, we find the CiC multiplicity function is fit by a halo model where the average number of satellites in a halo of mass M is = ((M - Mcut)/M1)^alpha with Mcut = 5.0 +1.5/-1.3 (+2.9/-2.6) X 10^13 Msun, M1 = 4.95 +0.37/-0.26 (+0.79/-0.53) X 10^14 Msun, and alpha = 1.035 +0.10/-0.17 (+0.24/-0.31) at the 68% and 95% confidence levels using a WMAP3 cosmology and z=0.2 halo catalog. Our method tightly constrains the fraction of LRGs that are satellite galaxies, 6.36 +0.38/-0.39, and the combination Mcut/10^{14} Msun + alpha = 1.53 +0.08/-0.09 at the 95% confidence level. We also find that mocks based on a halo catalog produced by a spherical overdensity (SO) finder reproduce both the measured CiC multiplicity function and the projected correlation function, while mocks based on a Friends-of-Friends (FoF) halo catalog has a deficit of close pairs at ~1 Mpc/h separations. Because the CiC method relies on higher order statistics of close pairs, it is robust to the choice of halo finder. In a companion paper we will apply this technique to optimize Finger-of-God (FOG) compression to eliminate the 1-halo contribution to the LRG power spectrum.Comment: 40 pages, 9 figures, submitted to Astrophysical Journa

    Absence of anti-correlations and of baryon acoustic oscillations in the galaxy correlation function from the Sloan Digital Sky Survey DR7

    Full text link
    One of the most striking features predicted by standard models of galaxy formation is the presence of anti-correlations in the matter distribution at large enough scales (r>r_c). Simple arguments show that the location of the length-scale r_c, marking the transition from positive to negative correlations, is the same for any class of objects as for the full matter distribution, i.e. it is invariant under biasing. This scale is predicted by models to be at about the same distance of the scale signaling the baryonic acoustic oscillation scale r_{bao}. We test these predictions in the newest SDSS galaxy samples.We find that, in several MG samples, the correlation function remains positive at scales >250 Mpc/h, while in the concordance LCDM it should be negative beyond r_c\approx 120 Mpc/h. In other samples the correlation function becomes negative at scales <50 Mpc/h. To investigate the origin of these differences we consider in detail the propagation of errors on the sample density into the estimation of the correlation function. We conclude that these are important at large enough separations, and that they are responsible for the observed differences between different estimators and for the measured sample to sample variations of the correlation function. We conclude that, in the newest SDSS samples, the large scale behavior of the galaxy correlation function is affected by intrinsic errors andv olume-dependent systematic effects which make the detection of correlations to be only an estimate of a lower limit of their amplitude, spatial extension and statistical errors. We point out that these results represent an important challenge to LCDM models as they largely differ from its predictions.(Abridged version).Comment: Version accepted for publication in Astronomy and Astrophysics; 10 pages, 13 .eps figures. Substantial changes with respect to version v1, more detailed explanations of the methods and results. Main results are unchanged. Version v3 with few typos correcte
    corecore