10,378 research outputs found

    Electron microscopic visualization of tRNA genes with ferritin-avidin: biotin labels

    Get PDF
    A method is described for indirect electron microscopic visualization and mapping of tRNA and other short transcripts hybridized to DNA. This method depends upon the attachment of the electron-dense protein ferritin to the RNA, the binding being mediated by the remarkably strong association of the egg white protein avidin with biotin. Biotin is covalently attached to the 3' end of tRNA using an NH2 (CH2) 5NH2 bridge. The tRNA-biotin adduct is hybridized to complementcrry DNA sequences present in a single stranded nonhomology loop of a DNA:DNA heteroduplex. Avidin, covalently crosslinked to ferritin is mixed with the heteroduplex and becomes bound to the hybridized tRNA-biotin. Observation of the DNA:RNA-biotin:avidin-ferritin complex by electron microsdopy specifically and accurately reveals the position of the tRNA gene, with a frequency of labeling of approximately 50%

    Ising metamagnets in thin film geometry: equilibrium properties

    Full text link
    Artificial antiferromagnets and synthetic metamagnets have attracted much attention recently due to their potential for many different applications. Under some simplifying assumptions these systems can be modeled by thin Ising metamagnetic films. In this paper we study, using both the Wang/Landau scheme and importance sampling Monte Carlo simulations, the equilibrium properties of these films. On the one hand we discuss the microcanonical density of states and its prominent features. On the other we analyze canonically various global and layer quantities. We obtain the phase diagram of thin Ising metamagnets as a function of temperature and external magnetic field. Whereas the phase diagram of the bulk system only exhibits one phase transition between the antiferromagnetic and paramagnetic phases, the phase diagram of thin Ising metamagnets includes an additional intermediate phase where one of the surface layers has aligned itself with the direction of the applied magnetic field. This additional phase transition is discontinuous and ends in a critical end point. Consequently, it is possible to gradually go from the antiferromagnetic phase to the intermediate phase without passing through a phase transition.Comment: 8 figures, accepted for publication in Physical Review

    Extending Feynman's Formalisms for Modelling Human Joint Action Coordination

    Full text link
    The recently developed Life-Space-Foam approach to goal-directed human action deals with individual actor dynamics. This paper applies the model to characterize the dynamics of co-action by two or more actors. This dynamics is modelled by: (i) a two-term joint action (including cognitive/motivatonal potential and kinetic energy), and (ii) its associated adaptive path integral, representing an infinite--dimensional neural network. Its feedback adaptation loop has been derived from Bernstein's concepts of sensory corrections loop in human motor control and Brooks' subsumption architectures in robotics. Potential applications of the proposed model in human--robot interaction research are discussed. Keywords: Psycho--physics, human joint action, path integralsComment: 6 pages, Late

    Neoliberalism and authoritarian media cultures: a Vietnamese perspective

    Get PDF
    Nguyễn Yến-Khanh, Sean Phelan, Elizabeth Gray, "Neoliberalism and authoritarian media cultures: a Vietnamese perspective" First Published in " Media, Culture & Society" January 29, 2022. https://doi.org/10.1177/01634437211060200Publishe

    The Stabilization of Superconductivity by Magnetic Field in Out-of-Equilibrium Nanowires

    Full text link
    A systematic study has been carried out on the previously reported "magnetic-field-induced superconductivity" of Zn nanowires. By varying parameters such as magnetic field orientation and wire length, the results provide evidence that the phenomenon is a nonequilibrium effect associated with the boundary electrodes. They also suggest there are two length scales involved, the superconducting coherence length and quasiparticle relaxation length. As wire lengths approach either of these length scales, the effect weakens. We demonstrate that it is appropriate to consider the effect to be a stabilization of superconductivity, that has been suppressed by an applied current.Comment: (Updated Version) 9 pages, 8 figure
    • …
    corecore