18 research outputs found

    Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis survives and persists for prolonged periods within its host in an asymptomatic, latent state and can reactivate years later if the host's immune system weakens. The dormant bacilli synthesize and accumulate triacylglycerol, reputed to be an energy source during latency. Among the phospholipases, phospholipase C plays an important role in the pathogenesis. Mutations in a known phospholipase C, plcC, of M. tuberculosis attenuate its growth during the late phase of infection in mice. Hydrolysis of phospholipids by phospholipase C generates diacylglycerol, a well-known signalling molecule that participates in the activation of extracellular signal-regulated kinases (ERK) through protein kinase C leading to macrophage activation. In the present study, we show that M. tuberculosis possesses an additional cell wall-associated protein, Rv3487c, with phospholipase C activity. The recombinant Rv3487c hydrolyses the substrate phosphatidylcholine and generates diacylglycerol by removing the phosphocholine. Furthermore, Rv3487c is expressed during infection as it exhibits significant humoral immunoreactivity with sera from children with tuberculosis, but not with that from adult patients

    Nitric Oxide Is Involved in Mycobacterium bovis

    Full text link

    Nitric oxide is involved in Mycobacterium bovis bacillus Calmette-Guerin-activated Jagged1 and Notch1 signaling

    No full text
    Pathogenic mycobacteria have evolved unique strategies to survive within the hostile environment of macrophages. Modulation of key signaling cascades by NO, generated by the host during infection, assumes critical importance in overall cell-fate decisions. We show that NO is a critical factor in Mycobacterium bovis bacillus Calmette-Guerin-mediated Notch1 activation, as the generation of activated Notch1 or expression of Notch1 target genes matrix metalloproteinase-9 (MMP-9) or Hes1 was abrogated in macrophages derived from inducible NO synthase (iNOS) knockout (iNOS(-/-)), but not from wild-type, mice. Interestingly, expression of the Notch1 ligand Jagged1 was compromised in M. bovis bacillus Calmette-Guerin-stimulated iNOS(-/-) macrophages, and loss of Jagged1 expression or Notch1 signaling could be rescued by NO donors. Signaling perturbations or genetic approaches implicated that robust expression of MMP-9 or Hes1 required synergy and cross talk between TLR2 and canonical Notch1-PI3K cascade. Further, CSL/RBP-Jk contributed to TLR2-mediated expression of MMP-9 or Hes1. Correlative evidence shows that, in a murine model for CNS tuberculosis, this mechanism operates in vivo only in brains derived from WT but not from iNOS(-/-) mice. Importantly, we demonstrate the activation of Notch1 signaling in vivo in granulomatous lesions in the brains of Mycobacterium tuberculosis-infected human patients with tuberculous meningitis. Current investigation identifies NO as a pathological link that modulates direct cooperation of TLR2 with Notch1-PI3K signaling or Jagged1 to regulate specific components of TLR2 responses. These findings provide new insights into mechanisms by which Notch1, TLR2, and NO signals are integrated in a cross talk that modulates a defined set of effector functions in macrophages

    Differential B-Cell Responses Are Induced by Mycobacterium tuberculosis PE Antigens Rv1169c, Rv0978c, and Rv1818c▿

    Get PDF
    The multigene PE and PPE family represents about 10% of the genome of Mycobacterium tuberculosis. Here, we report that three members of the PE family, namely, Rv1169c, Rv0978c, and Rv1818c, elicit a strong, but differential, B-cell humoral response among different clinical categories of tuberculosis patients. The study population (n = 211) was comprised of different clinical groups of both adult and child patients: group 1 (n = 94) patients with pulmonary infection, group 2 (n = 30) patients with relapsed infection, group 3 (n = 31) patients with extrapulmonary infections, and clinically healthy donors (n = 56). Among the PE proteins studied, group 1 adult patient sera reacted to Rv1818c and Rv0978c, while Rv1169c elicited immunoreactivity in group 3 children. However, all three PE antigens studied as well as the 19-kDa antigen did not demonstrate humoral reactivity with sera from group 2 patients with relapsed infection. The current study shows that while responsiveness to all three PE antigens is a good marker for M. tuberculosis infection, a strong response to Rv0978c or to Rv1818c by group 1 adult patients with pulmonary infection or largely restricted reactivity to Rv1169c antigen in child patients with extrapulmonary infections offers the possibility of differential utility in the serodiagnosis of tuberculosis

    Apoptosis triggered by Rv1818c, a PE family gene from Mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells

    No full text
    Ectopic expression of the Mycobacterium tuberculosis PE- family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells. Apoptosis induced by Rv1818c is blocked by the broad-spectrum caspase inhibitory peptide zVAD-FMK. Unexpectedly, Rv1818c-induced apoptosis is not blocked in a Jurkat sub-clone deficient for caspase-8 (JI 9.2) or in cells where caspase-9 function is inhibited or expression of caspase-9 reduced by siRNA, arguing against a central role for these caspases in Rv1818c-induced apoptotic signaling. Depleting cellular pools of the mitochondrial protein Smac/DIABLO substantially reduces apoptosis consistent with mitochondrial involvement in this death pathway. We present evidence that Rv1818c-induced apoptosis is blocked by the co-transfection of an endogenous inhibitor of caspase activation, XIAP in T cells. Additionally, Rv1818c is released into extracellular environment via exosomes secreted by M. tuberculosis infected BM-DC’s and macrophages. Furthermore, the extracellular Rv1818c protein can be detected in T cells co-cultured with infected BM-DC’s. Taken together, these data suggest that Rv1818c-induced apoptotic signaling is likely regulated in part by the Smac-dependent activation of caspases in T cells

    Apoptosis triggered by Rv1818c, a PE family gene from Mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells

    No full text
    Ectopic expression of the Mycobacterium tuberculosis PE-family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells. Apoptosis induced by Rv1818c is blocked by the broad-spectrum caspase inhibitory peptide zVAD-FMK. Unexpectedly, Rv1818c-induced apoptosis is not blocked in a Jurkat sub-clone deficient for caspase-8 (JI 9.2) or in cells where caspase-9 function is inhibited or expression of caspase-9 reduced by siRNA, arguing against a central role for these caspases in Rv1818c-induced apoptotic signaling. Depleting cellular pools of the mitochondrial protein Smac/DIABLO substantially reduces apoptosis consistent with mitochondrial involvement in this death pathway. We present evidence that Rv1818c-induced apoptosis is blocked by the co-transfection of an endogenous inhibitor of caspase activation, XIAP in T cells. Additionally, Rv1818c is released into extracellular environment via exosomes secreted by M. tuberculosis infected BM-DC's and macrophages. Furthermore, the extracellular Rv1818c protein can be detected in T cells co-cultured with infected BM-DC's. Taken together, these data suggest that Rv1818c-induced apoptotic signaling is likely regulated in part by the Smac-dependent activation of caspases in T cells

    Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis

    No full text
    Mycobacterium tuberculosis survives and persists for prolonged periods within its host in an asymptomatic, latent state and can reactivate years later if the host’s immune system weakens. The dormant bacilli synthesize and accumulate triacylglycerol, reputed to be an energy source during latency. Among the phospholipases, phospholipase C plays an important role in the pathogenesis. Mutations in a known phospholipase C, plcC, of M. tuberculosis attenuate its growth during the late phase of infection in mice. Hydrolysis of phospholipids by phospholipase C generates diacylglycerol, a well-known signalling molecule that participates in the activation of extracellular signal-regulated kinases (ERK) through protein kinase C leading to macrophage activation. In the present study, we show that M. tuberculosis possesses an additional cell wall-associated protein, Rv3487c, with phospholipase C activity. The recombinant Rv3487c hydrolyses the substrate phosphatidylcholine and generates diacylglycerol by removing the phosphocholine.Furthermore, Rv3487c is expressed during infection as it exhibits signifi cant humoral immunoreactivity with sera from children with tuberculosis, but not with that from adult patients

    Functional Role of the PE Domain and Immunogenicity of the Mycobacterium tuberculosis Triacylglycerol Hydrolase LipY▿

    Get PDF
    PE and PPE proteins appear to be important for virulence and immunopathogenicity in mycobacteria, yet the functions of the PE/PPE domains remain an enigma. To decipher the role of these domains, we have characterized the triacylglycerol (TAG) hydrolase LipY from Mycobacterium tuberculosis, which is the only known PE protein expressing an enzymatic activity. The overproduction of LipY in mycobacteria resulted in a significant reduction in the pool of TAGs, consistent with the lipase activity of this enzyme. Unexpectedly, this reduction was more pronounced in mycobacteria overexpressing LipY lacking the PE domain [LipY(ΔPE)], suggesting that the PE domain participates in the modulation of LipY activity. Interestingly, Mycobacterium marinum contains a protein homologous to LipY, termed LipYmar, in which the PE domain is substituted by a PPE domain. As for LipY, overexpression of LipYmar in Mycobacterium smegmatis significantly reduced the TAG pool, and this was further pronounced when the PPE domain of LipYmar was removed. Fractionation studies and Western blot analysis demonstrated that both LipY and LipY(ΔPE) were mainly present in the cell wall, indicating that the PE domain was not required for translocation to this site. Furthermore, electron microscopy immunolabeling of LipY(ΔPE) clearly showed a cell surface localization, thereby suggesting that the lipase may interact with the host immune system. Accordingly, a strong humoral response against LipY and LipY(ΔPE) was observed in tuberculosis patients. Together, our results suggest for the first time that both PE and PPE domains can share similar functional roles and that LipY represents a novel immunodominant antigen
    corecore