30 research outputs found

    Flat bands as a route to high-temperature superconductivity in graphite

    Full text link
    Superconductivity is traditionally viewed as a low-temperature phenomenon. Within the BCS theory this is understood to result from the fact that the pairing of electrons takes place only close to the usually two-dimensional Fermi surface residing at a finite chemical potential. Because of this, the critical temperature is exponentially suppressed compared to the microscopic energy scales. On the other hand, pairing electrons around a dispersionless (flat) energy band leads to very strong superconductivity, with a mean-field critical temperature linearly proportional to the microscopic coupling constant. The prize to be paid is that flat bands can generally be generated only on surfaces and interfaces, where high-temperature superconductivity would show up. The flat-band character and the low dimensionality also mean that despite the high critical temperature such a superconducting state would be subject to strong fluctuations. Here we discuss the topological and non-topological flat bands discussed in different systems, and show that graphite is a good candidate for showing high-temperature flat-band interface superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of functionalized Graphite", 21 pages, 12 figure

    Commensurability effect and lock-in transition in Mo/Si superconducting superlattices

    No full text
    We report the first observation of the lock-in transition in artificial superconducting superlattices, which takes place in tilted magnetic fields. The measurements were carried out on the Mo/Si layered system. The temperature dependence of the critical angle for the trapping of the vortices in the orientation parallel to the layer planes is determined by the previously known resistive method and by a new method based on the effect of commensurability between the intervortex distance and the superlattice wavelength. The temperature dependences of the critical angle obtained by the two methods practically coincide. The experimental results are consistent with the theoretical predictions of Feinberg and Villard

    Depairing critical currents and self-magnetic field effects in submicron YBa2Cu3O7-delta microbridges and bicrystal junctions

    No full text
    We report on depairing critical currents in submicron YBa 2 Cu 3 O 7-δ microbridges. A small-angle bicrystal grain boundary junction is used as a tool to study the entrance of vortices induced by a transport current and their influence on the I-V curves. The interplay between the depairing and the vortex motion determines a crossover in the temperature dependence of the critical current. The high entrance field of vortices in very narrow superconducting channels creates the possibility of carrying a critical current close to the depairing limit determined by the S-S ′ -S nature of the small-angle grain boundary junction. \ua9 2004 American Institute of Physics
    corecore