1,872 research outputs found

    Posing 3D Models from Drawing

    Get PDF
    Inferring the 3D pose of a character from a drawing is a complex and under-constrained problem. Solving it may help automate various parts of an animation production pipeline such as pre-visualisation. In this paper, a novel way of inferring the 3D pose from a monocular 2D sketch is proposed. The proposed method does not make any external assumptions about the model, allowing it to be used on different types of characters. The inference of the 3D pose is formulated as an optimisation problem and a parallel variation of the Particle Swarm Optimisation algorithm called PARAC-LOAPSO is utilised for searching the minimum. Testing in isolation as well as part of a larger scene, the presented method is evaluated by posing a lamp, a horse and a human character. The results show that this method is robust, highly scalable and is able to be extended to various types of models

    Exact Algorithms for Maximum Independent Set

    Get PDF
    We show that the maximum independent set problem (MIS) on an nn-vertex graph can be solved in 1.1996nnO(1)1.1996^nn^{O(1)} time and polynomial space, which even is faster than Robson's 1.2109nnO(1)1.2109^{n}n^{O(1)}-time exponential-space algorithm published in 1986. We also obtain improved algorithms for MIS in graphs with maximum degree 6 and 7, which run in time of 1.1893nnO(1)1.1893^nn^{O(1)} and 1.1970nnO(1)1.1970^nn^{O(1)}, respectively. Our algorithms are obtained by using fast algorithms for MIS in low-degree graphs in a hierarchical way and making a careful analyses on the structure of bounded-degree graphs

    Experimental Quantum Teleportation and Multi-Photon Entanglement via Interfering Narrowband Photon Sources

    Full text link
    In this letter, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high demanding synchronization technique in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multi-photon source will have applications in some advanced quantum communication protocols and linear optical quantum computation

    Fitness-driven deactivation in network evolution

    Full text link
    Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive aging mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, C(k)k1C(k) \sim k^{-1} and Cn1C \sim n^{-1}, where kk and nn refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and aging of networks where intrinsic features of individual nodes drive their popularity, and hence degree.Comment: IoP Styl

    Greenberger-Horne-Zeilinger-type violation of local realism by mixed states

    Full text link
    Cluster states are multi-particle entangled states with special entanglement properties particularly suitable for quantum computation. It has been shown that cluster states can exhibit Greenberger-Horne-Zeilinger (GHZ)-type non-locality even when some of their qubits have been lost. In the present work, we generated a four-photon mixed state, which is equivalent to the partial, qubit-loss state of an N-qubit cluster state up to some local transformations. By using this mixed state, we then realize a GHZ-type violation of local realism. Our results not only demonstrate a mixed state's GHZ-type non-locality but also exhibit the robustness of cluster states under qubit-loss conditions.Comment: four pages, five figures, revTe
    corecore