169,595 research outputs found

    Spin-Spin Interactions in Gauge Theory of Gravity, Violation of Weak Equivalence Principle and New Classical Test of General Relativity

    Get PDF
    For a long time, it is generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interactions will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.Comment: 17 pages, no figur

    Bound States in n Dimensions (Especially n = 1 and n = 2)

    Get PDF
    We stress that in contradiction with what happens in space dimensions n≥3n \geq 3, there is no strict bound on the number of bound states with the same structure as the semi-classical estimate for large coupling constant and give, in two dimensions, examples of weak potentials with one or infinitely many bound states. We derive bounds for one and two dimensions which have the "right" coupling constant behaviour for large coupling.Comment: Talk given by A. Martin at Les Houches, October 2001, to appear in "Few-Body Problems

    Recent advances in 3D printing of biomaterials.

    Get PDF
    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing

    Quantum phase transition and engineering in two-component BEC in optical lattices

    Get PDF
    In this paper we review recent progress in studying quantum phase transitions in one- and two-component Bose-Einstein condensates (BEC) in optical lattices. These phase transitions involve the emergence and disappearance of quantum coherence over whole optical lattice and of linear superposition of macroscopic quantum states. The latter may provide new means to engineer and to manipulate novel macroscopic quantum states and novel coherent atomic beams for quantum information processing, quantum computing etc.Comment: Format: LaTex2e. 7 pages, no figure. Talk at the Yang Symposium (in honor of C.N. Yang's 80th birthday), Beijing, China, June 2002. To appear in the Proceeding

    A Differential Turbo Detection Aided Sphere Packing Modulated Space-Time Coding Scheme

    No full text
    A signal construction method that combines orthogonal design with sphere packing has recently shown useful performance improvements over the conventional orthogonal design. In this contribution, we extend this concept and propose a novel Sphere Packing (SP) modulated differential Space-Time Block Coded (DSTBC) scheme, referred to here as (DSTBC-SP), which shows performance advantages over conventional DSTBC schemes. We also demonstrate that the performance of DSTBC-SP systems can be further improved by concatenating sphere packing aided modulation with channel coding and performing SP-symbol-to bit demapping as well as channel decoding iteratively. We also investigate the convergence behaviour of this concatenated scheme with the aid of Extrinsic Information Transfer (EXIT) Charts. The proposed turbo-detected DSTBC-SP scheme exhibits a ’turbo-cliff’ at Eb/N0 = 6dB and provides Eb/N0 gains of 23.7dB and 1.7dB at a BER of 10?5 over an equivalent-throughput uncoded DSTBC-SP scheme and a turbo-detected QPSK modulated DSTBC scheme, respectively
    • …
    corecore