37 research outputs found

    Insula-specific responses induced by dental pain: a proton magnetic resonance spectroscopy study

    Full text link
    OBJECTIVES: To evaluate whether induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex after stimulation of the right maxillary canine and to examine whether these metabolic changes and the subjective pain intensity perception correlate. METHODS: Ten male volunteers were included in the pain group and compared with a control group of 10 other healthy volunteers. The pain group received a total of 87-92 electrically induced pain stimuli over 15 min to the right maxillary canine tooth. Contemporaneously, they evaluated the subjective pain intensity of every stimulus using an analogue scale. Neurotransmitter changes within the left insular cortex were evaluated by MR spectroscopy. RESULTS: Significant metabolic changes in glutamine (+55.1%), glutamine/glutamate (+16.4%) and myo-inositol (-9.7%) were documented during pain stimulation. Furthermore, there was a significant negative correlation between the subjective pain intensity perception and the metabolic levels of Glx, Gln, glutamate and N-acetyl aspartate. CONCLUSION: The insular cortex is a metabolically active region in the processing of acute dental pain. Induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex resulting in significant alterations in metabolites. Negative correlation between subjective pain intensity rating and specific metabolites could be observed

    Ethanol-Mediated Regulation of Cytochrome P450 2A6 Expression in Monocytes: Role of Oxidative Stress-Mediated PKC/MEK/Nrf2 Pathway

    Get PDF
    Cytochrome P450 2A6 (CYP2A6) is known to metabolize nicotine, the major constituent of tobacco, leading to the production of toxic metabolites and induction of oxidative stress that result in liver damage and lung cancer. Recently, we have shown that CYP2A6 is induced by ethanol and metabolizes nicotine into cotinine and other metabolites leading to generation of reactive oxygen species (ROS) in U937 monocytes. However, the mechanism by which CYP2A6 is induced by ethanol is unknown. In this study, we have examined the role of the PKC/Nrf2 pathway (protein kinase C-mediated phosphorylation and translocation of nuclear erythroid 2-related factor 2 to the nucleus) in ethanol-mediated CYP2A6 induction. Our results showed that 100 mM ethanol significantly induced CYP2A6 mRNA and protein (∌150%) and increased ROS formation, and induction of gene expression and ROS were both completely blocked by treatment with either a CYP2E1 inhibitor (diallyl sulfide) or an antioxidant (vitamin C). The results suggest the role of oxidative stress in the regulation of CYP2A6 expression. Subsequently, we investigated the role of Nrf2 pathway in oxidative stress-mediated regulation of CYP2A6 expression in U937 monocytes. Our results showed that butylated hydroxyanisole, a stabilizer of nuclear Nrf2, increased CYP2A6 levels >200%. Staurosporine, an inhibitor of PKC, completely abolished ethanol-induced CYP2A6 expression. Furthermore, our results showed that a specific inhibitor of mitogen-activated protein kinase kinase (MEK) (U0126) completely abolished ethanol-mediated CYP2A6 induction and Nrf2 translocation. Overall, these results suggest that CYP2E1-mediated oxidative stress produced as a result of ethanol metabolism translocates Nrf2 into the nucleus through PKC/MEK pathway, resulting in the induction of CYP2A6 in monocytes. An increased level of CYP2A6 in monocytes is expected to further increase oxidative stress in smokers through CYP2A6-mediated nicotine metabolism. Thus, this study has clinical relevance because of the high incidence of alcohol use among smokers, especially in HIV-infected individuals

    An evaluation of telemedicine in surgery: telediagnosis compared with direct diagnosis

    No full text
    HYPOTHESIS: Telemedicine for real-time transmission of clinical documents and interactive remote telediagnosis allows accurate clinical application in surgery. DESIGN: Prospective cohort study in which 2 hospitals, 120 miles apart, were connected via integrated services digital network (ISDN) teleconferencing units, and each evaluated clinical cases in real time. SETTING: A tertiary care university hospital and primary care county hospital. PARTICIPANTS: Between May 1, 1998, and June 30, 1998, 112 patients undergoing digestive or endocrine surgery were evaluated by teletransmission (study group) and direct vision (control group). Diagnosis had to be known by the viewer, and either conventional magnetic resonance imaging or computed tomographic scans were available. MAIN OUTCOME MEASURES: Picture quality, organ structure, and pathologic finding viewed on telemedicine documents were evaluated by radiologists and surgeons blind to diagnosis. Accuracy of remote 128-kilobit (kb)/s transmission-rate diagnoses and results were compared with those obtained directly. RESULTS: Picture quality was "good" or "excellent" in 92.9% of transmitted documents and 95.5% of live images (P>.4). The target organ was always recognized, structure and pathologic finding were analyzable in 98.2% of transmitted documents and 99.1% of live documents, and fine structures were assessable in 89.3% of transmitted pictures and 95.5% of live pictures (P>.05). Diagnosis was made in 84.8% of transmitted cases and 93.8% of live cases (P = .02). CONCLUSIONS: Low bandwidth (128 kb/s) telemedicine application in surgery is reliable in evaluating remote cases. Loss of image quality through teletransmission occurred in 2.7% of cases, and diagnosis was not possible in 15.2% of transmitted vs 6.2% of live cases, suggesting factors other than technical quality (choice of radiological studies, additional clinical information required, etc). This underscores the importance of real-time interactive discussion during surgical teleconferences

    Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli

    Full text link
    Bacteria are thought to cope with fluctuating environmental solute concentrations primarily by adjusting the osmolality of their cytoplasm. To obtain insights into underlying metabolic adaptions, we analyzed the global metabolic response of Escherichia coli to sustained hyperosmotic stress using non-targeted mass spectrometry. We observed that 52% of 1,071 detected metabolites, including known osmoprotectants, changed abundance with increasing salt challenge. Unexpectedly, unsupervised data analysis revealed a substantial increase of most intermediates in the ubiquinone-8 (Q8) biosynthesis pathway and a 110-fold accumulation of Q8 itself, as confirmed by quantitative lipidomics. We then demonstrate that Q8 is necessary for acute and sustained osmotic stress tolerance using Q8 mutants and tolerance rescue through feeding non-respiratory Q8 analogues. Finally, in vitro experiments with artificial liposomes reveal mechanical membrane stabilization as a principal mechanism of Q8-mediated osmoprotection. Thus, we find that besides regulating intracellular osmolality, E. coli enhances its cytoplasmic membrane stability to withstand osmotic stress
    corecore