66 research outputs found
Population structure and association studies for reproductive stage salinity tolerance in rice (Oryza sativa L.)
Salinity is a major abiotic stress responsible for yield loss in rice as it severely affects various yield contributing traits. Rice is categorised as salt sensitive crop and it is important to identify genomic regions associated to salinity tolerance. In the present study, association mapping was performed to investigate the functional relationship between microsatellite markers and salinity related traits in a set of 180 diverse rice accessions. Association analysis was carried out by employing mixed linear model (MLM) approach. Population structure analysis revealed four subgroups in entire study panel while the admixture level ranged from 0.7-57.2%. A total of 22 marker-trait associations were discovered and four marker-trait associations explained phenotypic variation (R2) greater than 10%. Furthermore, 7 markers were found close to the candidate genes loci. Several markers were significantly associated with more than one trait, suggesting pleiotropic effects. The phenotypic variation explained by associated markers ranged from 2.92 to 18.50%. Comparative genomic search revealed that associated markers were close to candidate genes which play significant role in signal transduction, metabolic pathways and transcription factor activity. The significant associations identified in the present study could be used to improve salt tolerance in rice with introgression of favourable alleles through marker assisted breeding
Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease
Dendritic cells (DCs) play dual roles in innate and adaptive immunity based
on their functional maturity, and both innate and adaptive immune responses have
been implicated in myocardial tissue remodeling associated with
cardiomyopathies. Peripartum cardiomyopathy (PPCM) is a rare disorder which
affects women within one month antepartum to five months postpartum. A high
occurrence of PPCM in central Haiti (1 in 300 live births) provided the unique
opportunity to study the relationship of immune activation and DC maturation
to the etiology of this disorder. Plasma samples from two groups (n = 12) of
age- and parity-matched Haitian women with or without evidence of PPCM were
tested for levels of biomarkers of cardiac tissue remodeling and immune
activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and
CRP and decreased levels of TGF- were measured in PPCM subjects relative
to controls. Yet despite these findings, in vitro maturation of normal human
cord blood derived progenitor dendritic cells (CBDCs) was significantly
reduced (p < 0.001) in the presence of plasma from PPCM patients relative
to plasma from post-partum control subjects as determined by expression of
CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs
to induce allo-responses in PBMCs. These results represent the first findings
linking inhibition of DC maturation to the dysregulation of normal physiologic
cardiac
tissue remodeling during pregnancy and the pathogenesis of PPCM
The peridural membrane of the spine has characteristics of synovium.
The peridural membrane (PDM) is a well-defined structure between dura mater and the wall of the spinal canal. The spine may be viewed as a multi-segmented joint, with the epidural cavity and neural foramina as joint spaces and PDM as synovial lining. The objective of this investigation was to determine if PDM has histological characteristics of synovium. Samples of the PDM of the thoraco-lumbar spine were taken from 23 human cadavers and analyzed with conventional light microscopy and confocal microscopy. Results were compared to reports on similar analyses of synovium in the literature. Histological distribution of areolar, fibrous, and adipose connective tissue in PDM was similar to synovium. The PDM has an intima and sub-intima. No basement membrane was identified. CD68, a marker for macrophage-like-synoviocytes, and CD55, a marker for fibroblast-like synoviocytes, were seen in the lining and sub-lining of the PDM. Multifunctional hyaluronan receptor CD44 and hyaluronic acid synthetase 2 marker HAS2 were abundantly present throughout the membrane. Marked presence of CD44, CD55, and HAS2 in the well-developed tunica muscularis of blood vessels and in the body of the PDM suggests a role in the maintenance and lubrication of the epidural cavity and neural foramina. Presence of CD68, CD55, and CD44 suggests a scavenging function and a role in the inflammatory response to noxious stimuli. Thus, the human PDM has histological and immunohistochemical characteristics of synovium. This suggests that the PDM may be important for the homeostasis of the flexible spine and the neural structures it contains
The anatomy of the peridural membrane of the human spine.
A peridural membranous layer exists between the bony wall of the spinal canal and the dura mater, but reports on the anatomy of this structure have been inconsistent. The objective of this study is to give a precise description of the peridural membrane (PDM) and to define it unambiguously as a distinct and unique anatomical entity. Thirty-four cadaveric sections of human thoraco-lumbar spines were dissected. On gross examination, the PDM appears as a smooth hollow tube that covers the bony wall of the spinal canal. An evagination of this tube into the neural foramen contains the exiting spinal nerve. The entire epidural venous plexus, including its extension into the neural foramina, is contained in the body of the PDM. Histological examination of the PDM shows a variable distribution of veins arteries, lymphatics, and nerves embedded in a continuous sheath of fibrous, areolar, and adipose tissue. The posterior longitudinal ligament may be considered a dense condensation of fibrous tissue within the membrane. Thus, the PDM is a unique, continuous, and complete anatomical structure. In the spinal canal, the PDM is adjacent to the periosteum. In the neural foramen, suprapedicular PDM and pedicular periosteum separate anatomically to form a suprapedicular compartment, bounded anteriorly by the intervertebral disc and posteriorly by the facet joint. Trauma or degeneration of the disc or facet joint may lead to inflammation and pain sensitization of PDM. This protective mechanism may be of considerable importance for the functioning of the spine under conditions of strain
- …