13 research outputs found

    Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects

    No full text
    The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E. hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/Treg ratio, B. intestinihominis accumulated in the colon and promoted the infiltration of IFN-γ-producing γδT cells in cancer lesions. The immune sensor, NOD2, limited CTX-induced cancer immunosurveillance and the bioactivity of these microbes. Finally, E. hirae and B. intestinihominis specific-memory Th1 cell immune responses selectively predicted longer progression-free survival in advanced lung and ovarian cancer patients treated with chemo-immunotherapy. Altogether, E. hirae and B. intestinihominis represent valuable oncomicrobiotics ameliorating the efficacy of the most common alkylating immunomodulatory compound

    C/EBP homologous protein inhibits tissue repair in response to gut injury and is inversely regulated with chronic inflammation.

    No full text
    Loss of intestinal epithelial cell (IEC) homeostasis and apoptosis negatively affect intestinal barrier function. Uncontrolled activation of the unfolded protein response (UPR) in IEC contributes to an impaired barrier and is implicated in the pathogenesis of inflammatory bowel diseases. However, the contribution of the UPR target gene C/EBP homologous protein (CHOP), an apoptosis-associated transcription factor, to inflammation-related disease susceptibility remains unclear. Consistent with observations in patients with ulcerative colitis, we show that despite UPR activation in the epithelium, CHOP expression was reduced in mouse models of T-cell-mediated and bacteria-driven colitis. To elucidate the molecular mechanisms of IEC-specific CHOP expression, we generated a conditional transgenic mouse model (Chop(IEC Tg/Tg)). Chop overexpression increased the susceptibility toward dextran sodium sulfate (DSS)-induced intestinal inflammation and mucosal tissue injury. Furthermore, a delayed recovery from DSS-induced colitis and impaired closure of mechanically induced mucosal wounds was observed. Interestingly, these findings seemed to be independent of CHOP-mediated apoptosis. In vitro and in vivo cell cycle analyses rather indicated a role for CHOP in epithelial cell proliferation. In conclusion, these data show that IEC-specific overexpression impairs epithelial cell proliferation and mucosal tissue regeneration, suggesting an important role for CHOP beyond mediating apoptosis

    Mitochondrial function controls intestinal epithelial stemness and proliferation.

    No full text
    Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances in epithelial function are implicated in inflammatory and neoplastic diseases of the gastrointestinal tract. Here we report that mitochondrial function plays a critical role in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell (IEC)-specific mouse models, we show that loss of HSP60, a mitochondrial chaperone, activates the mitochondrial unfolded protein response (MT-UPR) and results in mitochondrial dysfunction. HSP60-deficient crypts display loss of stemness and cell proliferation, accompanied by epithelial release of WNT10A and RSPO1. Sporadic failure of Cre-mediated Hsp60 deletion gives rise to hyperproliferative crypt foci originating from OLFM4(+) stem cells. These effects are independent of the MT-UPR-associated transcription factor CHOP. In conclusion, compensatory hyperproliferation of HSP60(+) escaper stem cells suggests paracrine release of WNT-related factors from HSP60-deficient, functionally impaired IEC to be pivotal in the control of the proliferative capacity of the stem cell niche
    corecore