12 research outputs found

    Mouse models of neurodegenerative diseases: criteria and general methodology

    Full text link
    The major symptom of Alzheimer's disease is rapidly progressing dementia, coinciding with the formation of amyloid and tau deposits in the central nervous system, and neuronal death. At present familial cases of dementias provide the most promising foundation for modelling neurodegeneration. We describe the mnemonic and other major behavioral symptoms of tauopathies, briefly outline the genetics underlying familiar cases and discuss the arising implications for modelling the disease in mostly transgenic mouse lines. We then depict to what degree the most recent mouse models replicate pathological and cognitive characteristics observed in patients.There is no universally valid behavioral test battery to evaluate mouse models. The selection of individual tests depends on the behavioral and/or memory system in focus, the type of a model and how well it replicates the pathology of a disease and the amount of control over the genetic background of the mouse model. However it is possible to provide guidelines and criteria for modelling the neurodegeneration, setting up the experiments and choosing relevant tests. One should not adopt a "one (trans)gene, one disease" interpretation, but should try to understand how the mouse genome copes with the protein expression of the transgene in question. Further, it is not possible to recommend some mouse models over others since each model is valuable within its own constraints, and the way experiments are performed often reflects the idiosyncratic reality of specific laboratories. Our purpose is to improve bridging molecular and behavioural approaches in translational research

    Functional Imaging of Cerebral Oxygenation with Intrinsic Optical Contrast and Phosphorescent Probes

    No full text
    Microscopic in vivo measurements of cerebral oxygenation are of key importance for understanding normal cerebral energy metabolism and its dysregulation in a wide range of clinical conditions. Relevant cerebral pathologies include compromised blood perfusion following stroke and a decrease in efficiency of single-cell respiratory processes that occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this chapter we review a number of quantitative optical approaches to measuring oxygenation of blood and cerebral tissue. These methods can be applied to map the hemodynamic response and study neurovascular and neurometabolic coupling, and can provide microscopic imaging of biomarkers in animal models of human disease, which would be useful for screening potential therapeutic approaches. © 2014 Springer Science+Business Media New York
    corecore