14 research outputs found

    Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients

    No full text

    Repositioning PARP inhibitors for SARS-CoV-2 infection (COVID-19); a new multi-pronged therapy for ARDS?

    Get PDF
    Clinically approved PARP inhibitors (PARPi) have a mild adverse effect profile and are well tolerated as continuous daily oral therapy. We review the evidence that justifies the repurposing of PARPi to block the proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and combat the life-threatening sequelae of coronavirus disease 2019 (COVID-19) by several mechanisms. PARPi can effectively decrease IL-6, IL-1 and TNF-α levels (key interleukins in SARS-CoV-2-induced cytokine storm) and can alleviate subsequent lung fibrosis, as demonstrated in murine experiments and clinical trials. PARPi can tune macrophages towards a tolerogenic phenotype. PARPi may also counteract SARS-CoV-2-induced and inflammation-induced cell death and support cell survival. PARPi is effective in animal models of acute respiratory distress syndrome (ARDS), asthma and ventilator-induced lung injury. PARPi may potentiate the effectiveness of tocilizumab, anakinra, sarilumab, adalimumab, canakinumab or siltuximab therapy. The evidence suggests that PARPi would benefit COVID-19 patients and trials should be undertaken

    Pharmacological effects of ex vivo mesenchymal stem cell immunotherapy in patients with acute kidney injury and underlying systemic inflammation

    Get PDF
    Mesenchymal stem cells (MSCs) have natural immunoregulatory functions that have been explored for medicinal use as a cell therapy with limited success. A phase Ib study was conducted to evaluate the safety and immunoregulatory mechanism of action of MSCs using a novel ex vivo product (SBI-101) to preserve cell activity in patients with severe acute kidney injury. Pharmacological data demonstrated MSC-secreted factor activity that was associated with anti-inflammatory signatures in the molecular and cellular profiling of patient blood. Systems biology analysis captured multicompartment effects consistent with immune reprogramming and kidney tissue repair. Although the study was not powered for clinical efficacy, these results are supportive of the therapeutic hypothesis, namely, that treatment with SBI-101 elicits an immunotherapeutic response that triggers an accelerated phenotypic switch from tissue injury to tissue repair. Ex vivo administration of MSCs, with increased power of testing, is a potential new biological delivery paradigm that assures sustained MSC activity and immunomodulation

    Friends or foes? The knowns and unknowns of natural killer cell biology in COVID-19 and other coronaviruses in July 2020

    No full text
    The COVID-19 pandemic has caused more than 575,000 deaths worldwide as of mid-July 2020 and still continues globally unabated. Immune dysfunction and cytokine storm complicate the disease, which in turn leads to the question of whether stimulation or suppression of the immune system would curb the disease. Given the varied antiviral and regulatory functions of natural killer (NK) cells, they could be potent and powerful immune allies in this global fight against COVID-19. Unfortunately, there is somewhat limited knowledge of the role of NK cells in SARS-CoV-2 infections and even in the related SARS-CoV-1 and MERS-CoV infections. Several NK cell therapeutic options already exist in the treatment of tumor and other viral diseases and could be repurposed against COVID-19. In this review, we describe the current understanding and potential roles of NK cells and other Fc receptor (FcR) effector cells in SARS-CoV-2 infection, advantages of using animals to model COVID-19, and NK cell–based therapeutics that are being investigated for COVID-19 therapy
    corecore