2,240 research outputs found

    Role of a decrease in body heat content in the thermoregulatory reaction of the concha auriculae vessels

    Get PDF
    At the constant ambient temperature 28-30 C the rabbit ear vessels were dilated and their temperature was 34.8/0.1 C. Administration of the 23-29 C water into the stomach entailed thermoregulatory construction of the ear vessels within 15-25 min. The response occurred at various combinations of temperature changes in different parts of the body. The heat content of the rabbit body, as calculated by the blood temperature in the aorta arc, reduced by 266.3 + or - 26.2 cal/kg at the beginning of the response. The decrease in the organism heat content seems to serve as a signal for occurrence of a corresponding thermoregulatory response

    Π’ΠžΠ”ΠžΠ ΠžΠ” Π’Πž Π’ΠΠ•Π¨ΠΠ•Πœ Π―Π”Π Π• Π—Π•ΠœΠ›Π˜ И Π•Π“Πž Π ΠžΠ›Π¬ Π’ Π“Π›Π£Π‘Π˜ΠΠΠžΠ˜Μ† Π“Π•ΠžΠ”Π˜ΠΠΠœΠ˜ΠšΠ•

    Get PDF
    The content of hydrogen in the outer core of the Earth is roughly quantified from the dependence of the density of iron (viewed as the main component of the core) on the amount of hydrogen dissolved in the core, with account of the most likely presence of iron hydrogen in the outer core, and the matter’s density jumps at the boundaries between the outer liquid core and the internal solid core (that is devoid of hydrogen) and the mantle. Estimations for the outer liquid core show that the hydrogen content varies from 0.67 wt. % at the boundary with the solid inner core to 3.04 wt. % at the boundary with the mantle.Iron occlusion is viewed as the most likely mechanism for the iron–nickel core to capture such a significant amount of hydrogen. Iron occlusion took place at the stage of the young sun when the metallic core emerged in the cooling protoplanetary cloud containing hydrogen in high amounts, and non-volatile hydrogen was accumulated. Absorption (occlusion) of molecular hydrogen was preceded by dissociation of molecules into atoms and ionization of the atoms, as proved by results of studies focused on Fe–H2 system, and hydrogen dissipation was thus prevented. The core matter was subject to gravitational compression at high pressures that contributed to the forced rapprochement of protons and electrons which interaction resulted by the formation of hydrogen atoms. Highly active hydrogen atoms reacted with metals and produced hydrides of iron and nickel, FeH and NiH. While the metallic core and then the silicate mantle were growing and consolidating, the stability of FeH and NiH was maintained due to pressures that were steadily increasing. Later on, due to the impacts of external forces on the Earth, marginal layers at the mantle–core boundary were detached and displaced, pressures decreased in the system, and iron and nickel hydrides were decomposed to produce molecular hydrogen. Consequences of the hydrides transformation into molecular hydrogen are important in terms of petrology, mineralogy and geodynamics. At high temperatures, molecular hydrogen can be involved in redox reactions with iron silicates and carbonaceous gases (CO and CO2), and the synthesis of water becomes possible throughout the entire mantle. It is known that water can significantly reduce the temperature of rock melting, which leads to partial melting of the rocks and pluming in the asthenosphere (in the D” layer) at the bottom of the mantle, and causes the hydrolysis of magnesium silicates, which results in the chemically bound state (hydroxyl ions). Highly ductile hydroxyl-containing magnesium silicates can alter rheological properties of the rocks. A combination of rheologically weak areas in the mantle rocks and the external cosmic effects can cause significant impacts on the tectonic activity and facilitate its manifestation throughout the entire mantle.На основС зависимости плотности ΠΆΠ΅Π»Π΅Π·Π° (основного ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° ядра) ΠΎΡ‚ количСства растворСнного Π² Π½Π΅ΠΌ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятного нахоТдСния Π΅Π³ΠΎ Π²ΠΎ внСшнСм ядрС Π—Π΅ΠΌΠ»ΠΈ Π² Ρ„ΠΎΡ€ΠΌΠ΅ Π³ΠΈΠ΄Ρ€ΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ наличия Ρ€Π΅Π·ΠΊΠΈΡ… скачков плотности вСщСства Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ… внСшнСго ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ ядра с Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΌ (Π»ΠΈΡˆΠ΅Π½Π½Ρ‹ΠΌ примСси Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°) ядром ΠΈ с ΠΌΠ°Π½Ρ‚ΠΈΠ΅ΠΈΜ† ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° приблиТСнная количСствСнная ΠΎΡ†Π΅Π½ΠΊΠ° содСрТания Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° Π² Π½Π°Π·Π²Π°Π½Π½ΠΎΠΈΜ† ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ΅. Богласно ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡƒ расчСту, содСрТаниС Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° Π²ΠΎ внСшнСм ΠΆΠΈΠ΄ΠΊΠΎΠΌ ядрС мСняСтся ΠΎΡ‚ 0.67 мас. % Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ с Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΌ ядром Π΄ΠΎ 3.04 мас. % Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ с ΠΌΠ°Π½Ρ‚ΠΈΠ΅ΠΈΜ†.Π’ качСствС Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятного ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π·Π°Ρ…Π²Π°Ρ‚Π° Ρ‚Π°ΠΊΠΎΠ³ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ количСства Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠ½ΠΈΠΊΠ΅Π»Π΅Π²Ρ‹ΠΌ ядром рассматриваСтся окклюзия, которая происходила нСпосрСдствСнно ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ мСталличСского ядра Π² ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΌΡΡ ΠΏΡ€ΠΎΡ‚ΠΎΠΏΠ»Π°Π½Π΅Ρ‚Π½ΠΎΠΌ ΠΎΠ±Π»Π°ΠΊΠ΅, ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½ΠΎΠΌ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΌ, Π½Π° стадии ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠ³ΠΎ Π‘ΠΎΠ»Π½Ρ†Π°. ΠŸΡ€ΠΈ этом аккумуляция Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° происходила Π² Π½Π΅Π»Π΅Ρ‚ΡƒΡ‡Π΅ΠΈΜ† Ρ„ΠΎΡ€ΠΌΠ΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠΊΠΊΠ»ΡŽΠ·ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΡŽ молСкулярного Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°, ΠΊΠ°ΠΊ извСстно ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² исслСдования систСмы Fe-H2, ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΠΎΠ²Π°Π»Π° диссоциация ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π° Π°Ρ‚ΠΎΠΌΡ‹ ΠΈ ионизация послСдних. Π­Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π»ΠΎ Π΄ΠΈΡΡΠΈΠΏΠ°Ρ†ΠΈΡŽ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°. ВысокиС давлСния, Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Π² ΡƒΠΏΠ»ΠΎΡ‚Π½ΡΡŽΡ‰Π΅ΠΌΡΡ ΠΏΠΎΠ΄ дСйствиСм Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ сТатия вСщСства ядрС, способствовали ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ сблиТСнию разнозаряТСнных частиц (ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² ΠΈ элСктронов) ΠΈ ΠΈΡ… Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΈΜ†ΡΡ‚Π²ΠΈΡŽ с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Ρ‚ΠΎΠΌΠΎΠ² Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°. ПослСдниС, обладая высокой химичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, вступали Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ с ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌΠΈ, образуя Π³ΠΈΠ΄Ρ€ΠΈΠ΄Ρ‹ ΠΆΠ΅Π»Π΅Π·Π° FeH ΠΈ никСля NiH. НСпрСрывноС ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ давлСния ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ роста ΠΈ уплотнСния мСталличСского ядра, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΈ силикатной ΠΌΠ°Π½Ρ‚ΠΈΠΈ способствовало ΠΈΡ… ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π° ΠΈ никСля с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ молСкулярного Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° оказалось Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ, ΠΊΠΎΠ³Π΄Π° Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ€Π°Π·Π΄Π΅Π»Π° мантия – ядро, вслСдствиС Π²Π½Π΅ΡˆΠ½ΠΈΡ… силовых воздСйствий Π½Π° Π—Π΅ΠΌΠ»ΡŽ стали ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ срывы ΠΈ смСщСния Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… слоСв, приводящиС ΠΊ сниТСнию давлСния Π² систСмС. Врансформация Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΈΠ· Π³ΠΈΠ΄Ρ€ΠΈΠ΄Π½ΠΎΠΈΜ† Ρ„ΠΎΡ€ΠΌΡ‹ Π² молСкулярноС состояниС ΠΈΠΌΠ΅Π΅Ρ‚ Π²Π°ΠΆΠ½Ρ‹Π΅ пСтрологичСскиС, минСралогичСскиС ΠΈ гСодинамичСскиС послСдствия. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΈΜ† Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ ΠΏΡ€ΠΈ высоких Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ участиС Π² ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ-Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… рСакциях с ТСлСзосодСрТащими силикатами ΠΈ углСродсодСрТащими Π³Π°Π·Π°ΠΌΠΈ (CO, CO2), Ρ‡Ρ‚ΠΎ опрСдСляСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ синтСза Π²ΠΎΠ΄Ρ‹ Π²ΠΎ всСм объСмС ΠΌΠ°Π½Ρ‚ΠΈΠΈ. Π’ΠΎΠ΄Π°, ΠΊΠ°ΠΊ извСстно, сущСствСнно сниТаСт Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ плавлСния ΠΏΠΎΡ€ΠΎΠ΄, приводя ΠΊ ΠΈΡ… частичному плавлСнию (астСносфСра, слой D” Π² основании ΠΌΠ°Π½Ρ‚ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π·Π°Ρ€ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΏΠ»ΡŽΠΌΡ‹), ΠΈ осущСствляСт Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ· силикатов магния, пСрСходя ΠΏΡ€ΠΈ этом Π² химичСски связанноС состояниС (Π² Π²ΠΈΠ΄Π΅ гидроксил-ΠΈΠΎΠ½ΠΎΠ²). ГидроксилсодСрТащиС силикаты магния ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ высокой ΠΏΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ рСологичСскиС свойства ΠΏΠΎΡ€ΠΎΠ΄. ПоявлСниС рСологичСски ослаблСнных участков ΠΏΠΎΡ€ΠΎΠ΄ Π² ΠΌΠ°Π½Ρ‚ΠΈΠΈ Π² сочСтании с внСшними космичСскими воздСйствиями ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ сущСствСнноС влияниС Π½Π° Ρ‚Π΅ΠΊΡ‚ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ опрСдСляСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π΅Π΅ проявлСния Π²ΠΎ всСм объСмС ΠΌΠ°Π½Ρ‚ΠΈΠΈ

    Lepton pair production by high-energy neutrino in an external electromagnetic field

    Get PDF
    The process of the lepton pair production by a neutrino propagating in an external electromagnetic field is investigated in the framework of the Standard Model. Relatively simple exact expression for the probability as the single integral is obtained, which is suitable for a quantitative analysis.Comment: 9 pages, LATEX, 2 PS figures, submitted to Modern Physics Letters

    New Limit for the Half-Life of 2K(2neutrino)-Capture Decay Mode of 78Kr

    Full text link
    Features of data accumulated at 1817 hours in the experimental search for 2K(2 \nu)-capture decay mode of Kr-78 are discussed. The new limit for this decay half-life is found to be T_{1/2} > 2.3 *10^{20} yr. (90% C.L.).Comment: 7 pages, 4 figures, submitted to Phys. of Atom. Nuc
    • …
    corecore