461 research outputs found

    A Deep Optical Observation for an Enigmatic Unidentified Gamma-Ray Source 3EG J1835+5918

    Full text link
    We report a deep optical imaging observation by the Subaru telescope for a very soft X-ray source RX J1836.2+5925, which has been suspected to be an isolated neutron star associated with the brightest as-yet unidentified EGRET source outside the Galactic plane, 3EG J1835+5918. An extended source having a complex, bipolar shape is found at B ~ 26, and this might be an extended pulsar nebular whose flux is about 5-6 orders of magnitude lower than gamma-ray flux, although finding a galaxy of this magnitude by chance in the error circle is of order unity. We have found two even fainter, possibly point sources at B ~ 28, although their detections are not firm because of low signal-to-noise. If the extended object of B ~ 26 is a galaxy and not related to 3EG J1835+5918, a lower limit on X-ray/optical flux ratio is set as f_X/f_B >~ 2700, giving a further strong support of the neutron-star identification of 3EG J1835+5918. Interestingly, if either of the two sources at B ~ 28 is the real counterpart of RX J1836.2+5925 and thermal emission from the surface of an isolated neutron star, the temperature and distance to the source become ~ 4 x 10^5K and ~300pc, respectively, showing a striking similarity of its spectral energy distribution to the proto-type radio-quiet gamma-ray pulsar Geminga. No detection of nonthermal hard X-ray emission is consistent with the ASCA upper limit, if the nonthermal flux of 3EG J1835+5918/RX J1836.2+5925 is at a similar level with that of Gemiga.Comment: PASJ Letters in press. (Received March 26; Accepted May 17

    GRBs as Probes of the IGM

    Full text link
    Gamma-ray Bursts (GRBs) are the most powerful explosions known, capable of outshining the rest of gamma-ray sky during their short-lived prompt emission. Their cosmological nature makes them the best tool to explore the final stages in the lives of very massive stars up to the highest redshifts. Furthermore, studying the emission from their low-energy counterparts (optical and infrared) via rapid spectroscopy, we have been able to pin down the exact location of the most distant galaxies as well as placing stringent constraints on their host galaxies and intervening systems at low and high-redshift (e.g. metallicity and neutral hydrogen fraction). In fact, each GRB spectrum contains absorption features imprinted by metals in the host interstellar medium (ISM) as well as the intervening intergalactic medium (IGM) along the line of sight. In this chapter we summarize the progress made using a large dataset of GRB spectra in understanding the nature of both these absorbers and how GRBs can be used to study the early Universe, in particular to measure the neutral hydrogen fraction and the escape fraction of UV photons before and during the epoch of re-ionization.Comment: 18 pages; 5 Figures. Accepted for publication in Space Science Review

    The prompt optical/near-infrared flare of GRB 050904: the most luminous transient ever detected

    Get PDF
    With a redshift of z=6.295, GRB 050904 is the most distant gamma-ray burst ever discovered. It was an energetic event at all wavelengths and the afterglow was observed in detail in the near-infrared bands. We gathered all available optical and NIR afterglow photometry of this GRB to construct a composite NIR light curve spanning several decades in time and flux density. Transforming the NIR light curve into the optical, we find that the afterglow of GRB 050904 was more luminous at early times than any other GRB afterglow in the pre-\emph{Swift} era, making it at these wavelengths the most luminous transient ever detected. Given the intrinsic properties of GRB 050904 and its afterglow, we discuss if this burst is markedly different from other GRBs at lower redshifts.Comment: The Astronomical Journal, in press; revised version, including the comments of the referee (one figure added, text restructured, all conclusions unchanged), 7 pages, 3 figure

    Cosmological Gamma-Ray Bursts and Evolution of Galaxies

    Get PDF
    Evolution of the rate density of cosmological gamma-ray bursts (GRBs) is calculated and compared to the BATSE brightness distribution in the context of binary neutron-star mergers as the source of GRBs, taking account of the realistic star formation history in the universe and evolution of compact binary systems. We tried two models of the evolution of cosmic star formation rate (SFR): one is based on recent observations of SFRs at high redshifts, while the other is based on a galaxy evolution model of stellar population synthesis that reproduces the present-day colors of galaxies. It is shown that the binary merger scenario of GRBs naturally results in the comoving rate-density evolution of \propto (1+z)^{2-2.5} up to z ~ 1, that has been suggested independently from the compatibility between the number-brightness distribution and duration-brightness correlation. If the cosmic SFR has its peak at z ~ 1--2 as suggested by recent observations, the effective power-index of GRB photon spectrum, \alpha >~ 1.5$ is favored, that is softer than the recent observational determination of \alpha = 1.1 \pm 0.3. However, high redshift starbursts (z >~ 5) in elliptical galaxies, that have not yet been detected, can alleviate this discrepancy. The redshift of GRB970508 is likely about 2, just below the upper limit that is recently determined, and the absorption system at z = 0.835 seems not to be the site of the GRB.Comment: ApJ Lett. in press, very minor change just making clear that the predicted rate-density evolution is in a comoving sense. (Received 1997 May 15; Accepted 1997 July 2

    Histomorphological investigation of Liza aurata (Risso, 1810) (Mugilidae) ovary in the late oogenesis in the Caspian Sea

    Get PDF
    In the present study, various developmental stages of Liza aurata oocyte, especially IV and V stages have been described. On the basis of histological investigations, oocyte development in L. aurata comprises immature (I), the early maturing (II), the late maturing (III), mature (IV), ripe (V), and spent (VI) stages. In the stages I and II, nucleus occupied a large volume of oocyte. Vacuolization and vitellogenesis appearance started at stage III. Vitellogenesis increased by further growth of oocyte at stage IV and also vacuolization occurred. Zona radiata and follicular cells were more conspicuous at this stage. In the late stage IV, the number of vacuoles decreased due to the fusing of small vacuoles and nucleoli located on different places of the nucleus at this stage. At stage V, oocyte normally possessed one or two oil droplets; nucleus disappeared after migration to animal pole. Recently spawned oocytes were fluid, lemon in color and 779.2”m in diameter. The maximum gonadosomatic index (GSI) value was found at stage V

    Lyman Alpha Emitters in the Hierarchically Clustering Galaxy Formation

    Full text link
    We present a new theoretical model for the luminosity functions (LFs) of Lyman alpha (Lya) emitting galaxies in the framework of hierarchical galaxy formation. We extend a semi-analytic model of galaxy formation that reproduces a number of observations for local and high-z galaxies, without changing the original model parameters but introducing a physically-motivated modelling to describe the escape fraction of Lya photons from host galaxies (f_esc). Though a previous study using a hierarchical clustering model simply assumed a constant and universal value of f_esc, we incorporate two new effects on f_esc: extinction by interstellar dust and galaxy-scale outflow induced as a star formation feedback. It is found that the new model nicely reproduces all the observed Lya LFs of the Lya emitters (LAEs) at different redshifts in z ~ 3-6. Especially, the rather surprisingly small evolution of the observed LAE Lya LFs compared with the dark halo mass function is naturally reproduced. Our model predicts that galaxies with strong outflows and f_esc ~ 1 are dominant in the observed LFs. This is also consistent with available observations, while the simple universal f_esc model requires f_esc << 1 not to overproduce the brightest LAEs. On the other hand, we found that our model significantly overpredicts LAEs at z > 6, and absorption of Lya photons by neutral hydrogen in intergalactic medium (IGM) is a reasonable interpretation for the discrepancy. This indicates that the IGM neutral fraction x_HI rapidly evolves from x_HI << 1 at z < 6 to a value of order unity at z ~ 6-7, which is broadly consistent with other observational constraints on the reionization history.Comment: 14 pages, 7 figures, 1 table; accepted to ApJ; the html abstract is replaced to match the accepted version, the .ps and .pdf files are strictly identical between the 2nd and the 3rd version

    Diffuse Extragalactic Background Light versus Deep Galaxy Counts in the Subaru Deep Field: Missing Light in the Universe?

    Full text link
    Deep optical and near-infrared galaxy counts are utilized to estimate the extragalactic background light (EBL) coming from normal galactic light in the universe. Although the slope of number-magnitude relation of the faintest counts is flat enough for the count integration to converge, considerable fraction of EBL from galaxies could still have been missed in deep galaxy surveys because of various selection effects including the cosmological dimming of surface brightness of galaxies. Here we give an estimate of EBL from galaxy counts, in which these selection effects are quantitatively taken into account for the first time, based on reasonable models of galaxy evolution which are consistent with all available data of galaxy counts, size, and redshift distributions. We show that the EBL from galaxies is best resolved into discrete galaxies in the near-infrared bands (J, K) by using the latest data of the Subaru Deep Field; more than 80-90% of EBL from galaxies has been resolved in these bands. Our result indicates that the contribution by missing galaxies cannot account for the discrepancy between the count integration and recent tentative detections of diffuse EBL in the K-band (2.2 micron), and there may be a very diffuse component of EBL which has left no imprints in known galaxy populations.Comment: ApJ Letters in press. Two new reports on the diffuse EBL at 1.25 and 2.2 microns are added to the reference list and Table

    Evolution of the Luminosity Density in the Universe: Implications for the Nonzero Cosmological Constant

    Get PDF
    We show that evolution of the luminosity density of galaxies in the universe provides a powerful test for the geometry of the universe. Using reasonable galaxy evolution models of population synthesis which reproduce the colors of local galaxies of various morphological types, we have calculated the luminosity density of galaxies as a function of redshift zz. Comparison of the result with recent measurements by the Canada-France Redshift Survey in three wavebands of 2800{\AA}, 4400{\AA}, and 1 micron at z<1 indicates that the \Lambda-dominated flat universe with \lambda_0 \sim 0.8 is favored, and the lower limit on \lambda_0 yields 0.37 (99% C.L.) or 0.53 (95% C.L.) if \Omega_0+\lambda_0=1. The Einstein-de Sitter universe with (\Omega_0, \lambda_0)=(1, 0) and the low-density open universe with (0.2, 0) are however ruled out with 99.86% C.L. and 98.6% C.L., respectively. The confidence levels quoted apply unless the standard assumptions on galaxy evolution are drastically violated. We have also calculated a global star formation rate in the universe to be compared with the observed rate beyond z \sim 2. We find from this comparison that spiral galaxies are formed from material accretion over an extended period of a few Gyrs, while elliptical galaxies are formed from initial star burst at z >~ 5 supplying enough amount of metals and ionizing photons in the intergalactic medium.Comment: 11 pages including 3 figures, LaTeX, uses AASTeX. To Appear in ApJ Letter

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    Does the Number Density of Elliptical Galaxies Change at z<1?

    Full text link
    We have performed a detailed V/Vmax test for a sample of the Canada-France Redshift Survey (CFRS) for the purpose of examining whether the comoving number density of field galaxies changes significantly at redshifts of z<1. Taking into account the luminosity evolution of galaxies which depends on their morphological type through different history of star formation, we obtain \sim 0.5 in the range of 0.3<z<0.8, where reliable redshifts were secured by spectroscopy of either absorption or emission lines for the CFRS sample. This indicates that a picture of mild evolution of field galaxies without significant mergers is consistent with the CFRS data. Early-type galaxies, selected by their (V-I)_{AB} color, become unnaturally deficient in number at z>0.8 due to the selection bias, thereby causing a fictitious decrease of . We therefore conclude that a reasonable choice of upper bound of redshift z \sim 0.8 in the V/Vmax test saves the picture of passive evolution for field ellipticals in the CFRS sample, which was rejected by Kauffman, Charlot, & White (1996) without confining the redshift range. However, about 10% of the CFRS sample consists of galaxies having colors much bluer than predicted for irregular galaxies, and their \avmax is significantly larger than 0.5. We discuss this population of extremely blue galaxies in terms of starburst that has just turned on at their observed redshifts.Comment: 11 pages including 3 figures, to appear in ApJ Letter
    • 

    corecore