126 research outputs found

    Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications

    Get PDF
    A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm−2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V

    Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Get PDF
    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects

    Multistrip synthetic single-crystal-diamond photodiode based on a p-type/intrinsic/Schottky metal transverse configuration

    Get PDF
    A synthetic multistrip single-crystal-diamond detector based on a p -type/intrinsic diamond/Schottky metal transverse configuration, operating at zero-bias voltage, was developed. The device was characterized at the Diamond Light Source synchrotron in Harwell (UK) under monochromatic high-flux X-ray beams from 6 to 20 keV and a micro-focused 10 keV beam with a spot size of ~3 μm . No significant pixel-to-pixel variation of both spectral responsivity and time response, high spatial resolution and good signal uniformity along each strip were found, suggesting the tested device structure as a promising sensor for X-ray and UV radiation imaging

    Precision scans of the pixel cell response of double sided 3D pixel detectors to pion and x-ray beams

    Get PDF
    hree-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55μm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6μm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed

    Evaluation of Polarization Effects of e(-) Collection Schottky CdTe Medipix3RX Hybrid Pixel Detector

    Get PDF
    This paper focuses on the evaluation of operational conditions such as temperature, exposure time and flux on the polarization of a Schottky electron collection CdTe detector. A Schottky e- collection CdTe Medipix3RX hybrid pixel detector was developed as a part of the CALIPSO-HIZPAD2 EU project. The 128 ×128 pixel matrix and 0.75 mm thick CdTe sensor bump-bonded to Medipix3RX readout chips enabled the study of the polarization effects. Single and quad module Medipix3RX chips were used which had 128 ×128 and 256 ×256 pixel matrices, respectively. This study reports the sensor-level and pixel-level polarization effects of the detector obtained from a laboratory X-ray source. We report that the sensor-level polarization is highly dependent on temperature, flux and exposure time. Furthermore, the study of pixel-level polarization effects led to identification of a new type of pixel behaviour that is characterised by three distinct phases and, thus, named “tri-phase” (3-P) pixels. The 3-P pixels were the dominant cause of degradation of the flat-field image uniformity under high flux operation. A new method of identifying the optimum operational conditions that utilises a criterion related to the 3-P pixels is proposed. A generated optimum operational conditions chart under the new method is reported. The criterion is used for bias voltage reset depolarization of the detector. The method successfully represented the dependency of polarization on temperature, flux and exposure time and was reproducible for multiple sensors. Operating the detector under the 3-P pixel criterion resulted in the total efficiency not falling below 95%

    La prova da sforzo nella valutazione del rischio ipertensivo.

    No full text
    Scopo della ricerca è valutare se una prova da sforzo possa individuare i soggetti a rischio di ipertensione arteriosa stabile. 49 soggetti Normotesi, 28 soggetti Ipertesi Borderline e 33 soggetti Ipertesi stabili (apparentemente sani e omogenei per sesso, età, pratica sportiva) sono stati sottoposti ad una prova da sforzo ad esaurimento al cicloergometro con rilevazione pressori prima e dopo il test. Nell'ambito di ogni gruppo sono stati evidenziati soggetti con risposta pressoria esagerata (PAS/PAD> 230/110). I soggetti Normotesi hanno presentato valori pressori medi dopo sforzo significativamente più bassi (235 mmHg) di quella dei soggetti Ipertesi Borderline (258 mmHg) e di Ipertesi stabili (267 mmHg). Questa osservazione, supportata da dati bibliografici, suggerisce una diversa stima del rischio nella selezione dei soggetti a rischio ipertensivo
    corecore