138 research outputs found

    Optical conductivity of filled skutterudites

    Full text link
    A simple tight-binding model is constructed for the description of the electronic structure of some Ce-based filled skutterudite compounds showing an energy gap or pseudogap behavior. Assuming band-diagonal electron interactions on this tight-binding model, the optical conductivity spectrum is calculated by applying the second-order self-consistent perturbation theory to treat the electron correlation. The correlation effect is found to be of great importance on the description of the temperature dependence of the optical conductivity. The rapid disappearance of an optical gap with increasing temperature is obtained as observed in the optical experiment for Ce-based filled-skutterudite compounds.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004

    On the origin of multiple ordered phases in PrFe4P12

    Full text link
    The nature of multiple electronic orders in skutterudite PrFe_4P_{12} is discussed on the basis of a model with antiferro-quadrupole (AFQ) interaction of \Gamma_3 symmetry. The high-field phase can be reproduced qualitatively provided (i) ferro-type interactions are introduced between the dipoles as well as between the octupoles of localized f-electrons, and (ii) separation is vanishingly small between the \Gamma_1-\Gamma_4^{(1)} crystalline electric field (CEF) levels. The high-field phase can have either the same ordering vector q=(1,0,0) as in the low-field phase, or a different one q=0 depending on the parameters. In the latter case, distortion of the crystal perpendicular to the (111) axis is predicted. The corresponding anomaly in elastic constants should also appear. The electrical resistivity is calculated with account of scattering within the CEF quasi-quartet. It is found that the resistivity as a function of the direction of magnetic field shows a sharp maximum around the (111) axis at low temperatures because of the level crossing.Comment: 16 pages, 5 figure

    Crystalline electric field effects in the electrical resistivity of PrOs4_4Sb12_{12}

    Full text link
    The temperature TT and magnetic field HH dependencies of the electrical resistivity ρ\rho of the recently discovered heavy fermion superconductor \PrOsSb{} have features that are associated with the splitting of the Pr3+^{3+} Hund's rule multiplet by the crystalline electric field (CEF). These features are apparently due to magnetic exchange and aspherical Coulomb scattering from the thermally populated CEF-split Pr3+^{3+} energy levels. The ρ(T)\rho(T) data in zero magnetic field can be described well by calculations based on CEF theory for various ratios of magnetic exchange and aspherical Coulomb scattering, and yield CEF parameters that are qualitatively consistent with those previously derived from magnetic susceptibility, specific heat, and inelastic neutron scattering measurements. Calculated ρ(H)\rho(H) isotherms for a Γ3\Gamma_{3} ground state qualitatively account for the `dome-shaped' feature in the measured ρ(H)\rho(H) isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte

    High magnetic field phase diagram of PrOs4Sb12

    Full text link
    The magnetic phase diagram of PrOs4_4Sb12_{12} has been investigated by specific heat measurements between 8 and 32 T. A new Schottky anomaly due to excitations between two lowest crystalline-electric-field (CEF) singlets, has been found for both H(100)H \parallel (100) and H(110)H \parallel (110) above the field where the field-induced ordered phase (FIOP) is suppressed. The constructed HTH-T phase diagram shows weak magnetic anisotropy and implies a crossing of the two CEF levels at about 8 - 9 T for both field directions. These results provide an unambiguous evidence for the Γ1\Gamma_1 singlet being the CEF ground state and suggest the level crossing (involving lowest CEF levels) as the driving mechanism of FIOP.Comment: Submitted to Phys. Rev. Let

    Exciton Mediated Superconductivity in PrOs4Sb12

    Full text link
    The most important character of the exotic superconductor PrOs4Sb12 is the existence of low-lying excitations (excitons) with a finite energy gap and it appears as the magnetic field-induced order above 4.5 T. We focus on the a_u conduction band, which hybridizes with a Pr 4f^2 state strongly, coupled to the excitons. It results in an attractive interaction between the conduction electrons. The symmetry of the superconducting order parameter is determined by dispersion relation of the exciton. For the bcc system PrOs4Sb12, a d-wave state [kx ky + omega ky kz + omega^2 kz kx, omega=exp(pm i 2 pi/3)] is stabilized with broken time reversal symmetry.Comment: 4 page

    Exactly solvable toy models of unconventional magnetic alloys: Bethe Ansatz versus Renormalization Group method

    Full text link
    We propose toy models of unconventional magnetic alloys, in which the density of band states, ρ(ϵ)\rho(\epsilon), and hybridization, t(ϵ)t(\epsilon), are energy dependent; it is assumed, however, that t2(ϵ)ρ1(ϵ)t^2(\epsilon)\propto\rho^{-1}(\epsilon), and hence an effective electron-impurity coupling Γ(ϵ)=ρ(ϵ)t2(ϵ)\Gamma(\epsilon)=\rho(\epsilon)t^2(\epsilon) is energy independent. In the renormalization group approach, the physics of the system is assumed to be governed by Γ(ϵ)\Gamma(\epsilon) only rather than by separate forms of ρ(ϵ)\rho(\epsilon) and t(ϵ)t(\epsilon). However, an exact Bethe Ansatz solution of the toy Anderson model demonstrates a crucial role of a form of inverse band dispersion k(ϵ)k(\epsilon).Comment: A final version. A previous one has been sent to Archive because of my technical mistake. Sorr

    Superconductivity and crystalline electric field effects in the filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}

    Full text link
    X-ray powder diffraction, magnetic susceptibility χ(T)\chi(T), and electrical resistivity ρ(T)\rho(T) measurements were made on single crystals of the filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}. One end of the series (x=0x = 0) is a heavy fermion superconductor with a superconducting critical temperature Tc=1.85T_{c} = 1.85 K, while the other end (x=1x = 1) is a conventional superconductor with Tc1T_{c} \approx 1 K. The lattice constant aa decreases approximately linearly with increasing Ru concentration xx. As Ru (Os) is substituted for Os (Ru), TcT_{c} decreases nearly linearly with substituent concentration and exhibits a minimum with a value of Tc=0.75T_{c} = 0.75 K at x=0.6x = 0.6, suggesting that the two types of superconductivity compete with one another. Crystalline electric field (CEF) effects in χdc(T)\chi_\mathrm{dc}(T) and ρ(T)\rho(T) due to the splitting of the Pr3+^{3+} nine-fold degenerate Hund's rule J=4J = 4 multiplet are observed throughout the series, with the splitting between the ground state and the first excited state increasing monotonically as xx increases. The fits to the χdc(T)\chi_\mathrm{dc}(T) and ρ(T)\rho(T) data are consistent with a Γ3\Gamma_{3} doublet ground state for all values of x, although reasonable fits can be obtained for a Γ1\Gamma_{1} ground state for xx values near the end member compounds (x=0x = 0 or x=1x = 1).Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Calculation of Optical Conductivity of YbB12_{12} using Realistic Tight-Binding Model

    Get PDF
    Based on the previously reported tight-binding model fitted to the LDA+U band calculation, optical conductivity of the prototypical Kondo insulator YbB12_{12} is calculated theoretically. Many-body effects are taken into account by the self-consistent second order perturbation theory. The gross shape of the optical conductivity observed in experiments are well described by the present calculation, including their temperature-dependences.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004

    Exciton Mediated Triplet Superconductivity in Th System PrOs4Sb12

    Full text link
    In PrOs4Sb12, the lowest-lying singlet and triplet states in a Pr 4f^2 configuration hybridize with conduction electrons having local a_u and t_u point-group symmetries. It is shown that for an attractive triplet pairing interaction, the orbital degrees of freedom of the t_u component are important. In addition, the Th point-group symmetry characteristic of skutterudites plays an important role in stabilizing triplet superconductivity.Comment: 4 pages, 2 figure
    corecore