79 research outputs found
Collisional decay of 87Rb Feshbach molecules at 1005.8 G
We present measurements of the loss-rate coefficients K_am and K_mm caused by
inelastic atom-molecule and molecule-molecule collisions. A thermal cloud of
atomic 87Rb is prepared in an optical dipole trap. A magnetic field is ramped
across the Feshbach resonance at 1007.4 G. This associates atom pairs to
molecules. A measurement of the molecule loss at 1005.8 G yields K_am=2 10^-10
cm^3/s. Additionally, the atoms can be removed with blast light. In this case,
the measured molecule loss yields K_mm=3 10^-10 cm^3/s
A Mott-like State of Molecules
We prepare a quantum state where each site of an optical lattice is occupied
by exactly one molecule. This is the same quantum state as in a Mott insulator
of molecules in the limit of negligible tunneling. Unlike previous Mott
insulators, our system consists of molecules which can collide inelastically.
In the absence of the optical lattice these collisions would lead to fast loss
of the molecules from the sample. To prepare the state, we start from a Mott
insulator of atomic 87Rb with a central region, where each lattice site is
occupied by exactly two atoms. We then associate molecules using a Feshbach
resonance. Remaining atoms can be removed using blast light. Our method does
not rely on the molecule-molecule interaction properties and is therefore
applicable to many systems.Comment: Proceedings of the 20th International Conference on Atomic Physics
(ICAP 2006), edited by C. Roos, H. Haffner, and R. Blatt, AIP Conference
Proceedings, Melville, 2006, Vol. 869, pp. 278-28
Normal-mode spectroscopy of a single bound atom-cavity system
The energy-level structure of a single atom strongly coupled to the mode of a
high-finesse optical cavity is investigated. The atom is stored in an
intracavity dipole trap and cavity cooling is used to compensate for inevitable
heating. Two well-resolved normal modes are observed both in the cavity
transmission and the trap lifetime. The experiment is in good agreement with a
Monte Carlo simulation, demonstrating our ability to localize the atom to
within at a cavity antinode.Comment: 4 pages, 4 figure
Effect of pressure on the polarized infrared optical response of quasi-one-dimensional LaTiO
The pressure-induced changes in the optical properties of the
quasi-one-dimensional conductor LaTiO were studied by
polarization-dependent mid-infrared micro-spectroscopy at room temperature. For
the polarization of the incident radiation parallel to the conducting
direction, the optical conductivity spectrum shows a pronounced mid-infrared
absorption band, exhibiting a shift to lower frequencies and an increase in
oscillator strength with increasing pressure. On the basis of its pressure
dependence, interpretations of the band in terms of electronic transitions and
polaronic excitations are discussed. Discontinuous changes in the optical
response near 15 GPa are in agreement with a recently reported pressure-induced
structural phase transition and indicate the onset of a dimensional crossover
in this highly anisotropic system.Comment: 7 pages, 7 figure
Atom-molecule Rabi oscillations in a Mott insulator
We observe large-amplitude Rabi oscillations between an atomic and a
molecular state near a Feshbach resonance. The experiment uses 87Rb in an
optical lattice and a Feshbach resonance near 414 G. The frequency and
amplitude of the oscillations depend on magnetic field in a way that is well
described by a two-level model. The observed density dependence of the
oscillation frequency agrees with the theoretical expectation. We confirmed
that the state produced after a half-cycle contains exactly one molecule at
each lattice site. In addition, we show that for energies in a gap of the
lattice band structure, the molecules cannot dissociate
Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa
It has been known that the elemental Yb, a divalent metal at mbient pressure,
becomes a mixed-valent metal under external pressure, with its valence reaching
~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the
evolution of microscopic electronic states associated with the valence
crossover in Yb at external pressures up to 18 GPa. The measured infrared
reflectivity spectrum R(w) of Yb has shown large variations with pressure. In
particular, R(w) develops a deep minimum in the mid-infrared, which shifts to
lower energy with increasing pressure. The dip is attributed to optical
absorption due to a conduction c-f electron hybridization state, similarly to
those previously observed for heavy fermion compounds. The red shift of the dip
indicates that the - hybridization decreases with pressure, which is
consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp
Structure stability in the simple element sodium under pressure
The simple alkali metal Na, that crystallizes in a body-centred cubic
structure at ambient pressure, exhibits a wealth of complex phases at extreme
conditions as found by experimental studies. The analysis of the mechanism of
stabilization of some of these phases, namely, the low-temperature Sm-type
phase and the high-pressure cI16 and oP8 phases, shows that they satisfy the
criteria for the Hume-Rothery mechanism. These phases appear to be stabilized
due to a formation of numerous planes in a Brillouin-Jones zone in the vicinity
of the Fermi sphere of Na, which leads to the reduction of the overall
electronic energy. For the oP8 phase, this mechanism seems to be working if one
assumes that Na becomes divalent metal at this density. The oP8 phase of Na is
analysed in comparison with the MnP-type oP8 phases known in binary compounds,
as well as in relation to the hP4 structure of the NiAs-type
Collisional relaxation of Feshbach molecules and three-body recombination in 87Rb Bose-Einstein condensates
We predict the resonance enhanced magnetic field dependence of atom-dimer
relaxation and three-body recombination rates in a Rb Bose-Einstein
condensate (BEC) close to 1007 G. Our exact treatments of three-particle
scattering explicitly include the dependence of the interactions on the atomic
Zeeman levels. The Feshbach resonance distorts the entire diatomic energy
spectrum causing interferences in both loss phenomena. Our two independent
experiments confirm the predicted recombination loss over a range of rate
constants that spans four orders of magnitude.Comment: 4 pages, 3 eps figures (updated references
Effect of pressure on the Raman modes of antimony
The effect of pressure on the zone-center optical phonon modes of antimony in
the A7 structure has been investigated by Raman spectroscopy. The A_g and E_g
frequencies exhibit a pronounced softening with increasing pressure, the effect
being related to a gradual suppression of the Peierls-like distortion of the A7
phase relative to a cubic primitive lattice. Also, both Raman modes broaden
significantly under pressure. Spectra taken at low temperature indicate that
the broadening is at least partly caused by phonon-phonon interactions. We also
report results of ab initio frozen-phonon calculations of the A_g and E_g mode
frequencies. Presence of strong anharmonicity is clearly apparent in calculated
total energy versus atom displacement relations. Pronounced nonlinearities in
the force versus displacement relations are observed. Structural instabilities
of the Sb-A7 phase are briefly addressed in the Appendix.Comment: 10 pages, 8 figure
Lieb-Liniger model of a dissipation-induced Tonks-Girardeau gas
We show that strong inelastic interactions between bosons in one dimension
create a Tonks-Girardeau gas, much as in the case of elastic interactions. We
derive a Markovian master equation that describes the loss caused by the
inelastic collisions. This yields a loss rate equation and a dissipative
Lieb-Liniger model for short times. We obtain an analytic expression for the
pair correlation function in the limit of strong dissipation. Numerical
calculations show how a diverging dissipation strength leads to a vanishing of
the actual loss rate and renders an additional elastic part of the interaction
irrelevant
- …