4,517 research outputs found

    Observational Tests and Predictive Stellar Evolution II: Non-standard Models

    Full text link
    We examine contributions of second order physical processes to results of stellar evolution calculations amenable to direct observational testing. In the first paper in the series (Young et al. 2001) we established baseline results using only physics which are common to modern stellar evolution codes. In the current paper we establish how much of the discrepancy between observations and baseline models is due to particular elements of new physics. We then consider the impact of the observational uncertainties on the maximum predictive accuracy achievable by a stellar evolution code. The sun is an optimal case because of the precise and abundant observations and the relative simplicity of the underlying stellar physics. The Standard Model is capable of matching the structure of the sun as determined by helioseismology and gross surface observables to better than a percent. Given an initial mass and surface composition within the observational errors, and no additional constraints for which the models can be optimized, it is not possible to predict the sun's current state to better than ~7%. Convectively induced mixing in radiative regions, seen in multidimensional hydrodynamic simulations, dramatically improves the predictions for radii, luminosity, and apsidal motions of eclipsing binaries while simultaneously maintaining consistency with observed light element depletion and turnoff ages in young clusters (Young et al. 2003). Systematic errors in core size for models of massive binaries disappear with more complete mixing physics, and acceptable fits are achieved for all of the binaries without calibration of free parameters. The lack of accurate abundance determinations for binaries is now the main obstacle to improving stellar models using this type of test.Comment: 33 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Connecting in place: older adults' experience of online mindfulness therapy during the COVID-19 pandemic

    Get PDF
    BACKGROUND: the negative consequences of COVID-19 distancing measures on older adults' mental health and ability to access services have been well documented. Online cognitive behavioural therapy and mindfulness interventions for older adults, carried out during the COVID-19 pandemic, have shown that these interventions are feasible and have potential mental health benefits. However, little research has been carried out on older adults' experiences of engaging with online psychological therapy, and specifically mindfulness therapy. OBJECTIVES: to understand the experience of older adults engaging with online mindfulness therapy during the COVID-19 pandemic. STUDY DESIGN: a qualitative analysis of four community-based focus groups. PARTICIPANTS: thirty-six community dwelling older adults aged between 65 and 85 years were recruited via older adult organisations, charities and the local press. Nineteen percent had long-term physical health conditions, 25% had severe and enduring mental health difficulties and 19% had mild to moderate mental health difficulties. RESULTS: there was a strong sense of group cohesion and community from the participants.Three main themes were identified: reasons for applying, experience of the mindfulness therapy and connecting at home. CONCLUSIONS: the majority of participants were positive about attending a mindfulness group online. This extended to the perceived psychological and social benefits as well as practical considerations. While some participants noted technological hurdles at the beginning of the course, the findings challenge previous studies that suggest older adults are reluctant to engage in online psychological therapies and has important implications for the future provision of psychological therapies to this population

    The Struve-Sahade effect in the optical spectra of O-type binaries I. Main-sequence systems

    Get PDF
    We present a spectroscopic analysis of four massive binary systems that are known or are good candidates to display the Struve-Sahade effect (defined as the apparent strengthening of the secondary spectrum of the binary when the star is approaching, and the corresponding weakening of the lines when it is receding). We use high resolution optical spectra to determine new orbital solutions and spectral types of HD 165052, HD 100213, HD 159176 and DH Cep. As good knowledge of the fundamental parameters of the considered systems is necessary to examine the Struve-Sahade effect. We then study equivalent width variations in the lines of both components of these binaries during their orbital cycle. In the case of these four systems, variations appear in the equivalent widths of some lines during the orbital cycle, but the definition given above can any longer be valid, since it is now clear that the effect modifies the primary spectrum as much as the secondary spectrum. Furthermore, the lines affected, and the way in which they are affected, depend on the considered system. For at least two of them (HD 100213 and HD 159176) these variations probably reflect the ellipsoidal variable nature of the system.Comment: 12 pages, 20 figures, in press A&

    The progenitor of a type Ia supernova with a short delay time?

    Full text link
    HD49798/RXJ0648.0-4418 is the only known X-ray binary composed of a hot subdwarf and a massive white dwarf (M=1.28+/-0.05 Msun). This system, with an orbital period of 1.55 days, is the outcome of a common envelope evolution, most likely of a pair of stars with initial masses of about 8-10 Msun. When the hot subdwarf, currently in a He-burning phase, will expand again and fill its Roche-lobe, the enhanced mass transfer can rapidly bring the already massive white dwarf above the Chandrasekhar limit. The possible final fate, either a Type Ia supernova explosion or an accretion induced collapse, is particularly interesting in view of the high rotational velocity of this star, which has the shortest spin period (13 s) observed in a white dwarf.Comment: 4 pages, to appear in Proceedings of IAU Symp. 281, Binary Paths to Type Ia Supernovae Explosions, ed. R. Di Stefano and M. Ori

    Modelling CO emission from Mira's wind

    Full text link
    We have modelled the circumstellar envelope of {\it o} Ceti (Mira) using new observational constraints. These are obtained from photospheric light scattered in near-IR vibrational-rotational lines of circumstellar CO molecules at 4.6 micron: absolute fluxes, the radial dependence of the scattered intensity, and two line ratios. Further observational constraints are provided by ISO observations of far-IR emission lines from highly excited rotational states of the ground vibrational state of CO, and radio observations of lines from rotational levels of low excitation of CO. A code based on the Monte-Carlo technique is used to model the circumstellar line emission. We find that it is possible to model the radio and ISO fluxes, as well as the highly asymmetric radio-line profiles, reasonably well with a spherically symmetric and smooth stellar wind model. However, it is not possible to reproduce the observed NIR line fluxes consistently with a `standard model' of the stellar wind. This is probably due to incorrectly specified conditions of the inner regions of the wind model, since the stellar flux needs to be larger than what is obtained from the standard model at the point of scattering, i.e., the intermediate regions at approximately 100-400 stellar radii (2"-7") away from the star. Thus, the optical depth in the vibrational-rotational lines from the star to the point of scattering has to be decreased. This can be accomplished in several ways. For instance, the gas close to the star (within approximately 2") could be in such a form that light is able to pass through, either due to the medium being clumpy or by the matter being in radial structures (which, further out, developes into more smooth or shell-like structures).Comment: 18 pages, 3 figures, accepted for publication in Ap

    X-ray and optical observations of the unique binary system HD49798/RXJ0648.0-4418

    Full text link
    We report the results of XMM-Newton observations of HD49798/RXJ0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P=13.2 s) and has a dynamically measured mass of 1.28+/-0.05 M_sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT~40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~10^{32} erg/s is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass-loss. A search for optical pulsations at the South African Astronomical Observatory 1.9-m telescope gave negative results. X-rays were detected also during the white dwarf eclipse. This emission, with luminosity 2x10^{30} erg/s, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD49798/RXJ0648.0-4418 is a post-common envelope binary which most likely originated from a pair of stars with masses ~8-10 M_sun. After the current He-burning phase, HD 49798 will expand and reach the Roche-lobe, causing a higher accretion rate onto the white dwarf which can reach the Chandrasekhar limit. Considering the fast spin of the white dwarf, this could lead to the formation of a millisecond pulsar. Alternatively, this system could be a Type Ia supernova progenitor with the appealing characteristic of a short time delay, being the descendent of relatively massive stars.Comment: Accepted for publication on The Astrophysical Journa

    An experimental and numerical analysis of flow in a ShockWave power generator

    Get PDF
    This paper describes the use of a rotating all mirror image de-rotator system in collaboration with Particle Image Velocimetry (PIV) to visualise and examine qualitatively the flow patterns within a clear acrylic model of a ShockWave Power GeneratorTM (SPG-TM). The authors have been able to obtain the relative velocities of the flow within the SPG-TM unit at rotational speeds of 1,000 rpm. Vector maps of the relative flow field in the pertinent areas are presented for this rotational speed. The data is compared with the results of a Computational Fluid Dynamics (CFD) model and appears to show a reasonable correlation

    Modeling of the Super-Eddington Phase for Classical Novae: Five IUE Novae

    Full text link
    We present a light curve model for the super-Eddington luminosity phase of five classical novae observed with IUE. Optical and UV light curves are calculated based on the optically thick wind theory with a reduced effective opacity for a porous atmosphere. Fitting a model light curve with the UV 1455 \AA light curve, we determine the white dwarf mass and distance to be (1.3 M_sun, 4.4 kpc) for V693 CrA, (1.05 M_sun, 1.8 kpc) for V1974 Cyg, (0.95 M_sun, 4.1 kpc) for V1668 Cyg, (1.0 M_sun, 2.1 kpc) for V351 Pup, and (1.0 M_sun, 4.3 kpc) for OS And.Comment: 9 pages including 8 figures, to appear in the Astrophysical Journa

    Larval programming of post-hatch muscle growth and activity in Atlantic salmon (Salmo salar)

    Get PDF
    Larval muscle development in Atlantic salmon is known to be affected by temperature; however, the long term effects and possible mechanisms involved are less well understood. Therefore, the aim of this study was to evaluate the influence of egg incubation temperature on post-hatch muscle growth and fish activity. Salmon eggs were incubated at either 10°C or 5°C from fertilization until hatching, then subsequently both groups were reared at 5°C. Fish from both groups were sampled at the eyed stage, 6 and 21 weeks after first feeding, for muscle cellularity analysis and immunocytochemistry. In addition, to try to establish a mechanism for altered growth, the activity of the fish was measured at 3, 6 and 21 weeks after first feeding. Our results demonstrate that whereas fish incubated at 10°C grow faster, the fish incubated at 5°C show a more sustained period of muscle growth and by 21 weeks are significantly longer, heavier and have more muscle fibres than those fish incubated at a higher temperature. We also demonstrate that fish raised at 5°C show increased food seeking activity throughout development and that this may explain their sustained growth and muscle development. These results taken together, demonstrate that egg incubation temperature up to hatching in salmon is critical for longer term muscle growth, twinned with increased activity. This is of interest to the aquaculture industry in term of the production of good quality fish protein
    • …
    corecore