36 research outputs found

    Peri-implant infections of oral biofilm etiology

    Full text link
    Biofilms are complex microbial communities that grow on various surfaces in nature. The oral micobiota tend to form polymicrobial biofilms, particularly on the hard mineralized surfaces of teeth, which may impact on oral health and disease. They can cause inflammation of the adjacent tooth-supporting (periodontal) tissues, leading to destructive periodontal disease and tooth loss. The emergence of osseointegrated dental implants as a restorative treatment option for replacing missing teeth has also brought along new artificial surfaces within the oral cavity, on which oral bacteria can form biofilms. As in the case of natural teeth, biofilms on implant surfaces may also trigger infection and cause inflammatory destruction of the peri-implant tissue (i.e. peri-implantitis). While there are strong similarities in the composition of the mixed microbial flora between periodontal and peri-implant infections, there are also a few distinctive differences. The immunological events underlying the pathogenesis of peri-implant infections are qualitatively similar, yet more extensive, compared to periodontal infections, resulting in a faster progression of tissue destruction. This chapter summarizes the current knowledge on the microbiology and immunology of peri-implant infections, including findings from the peri-implant crevicular fluid, the inflammatory exudate of the peri-implant tissue. Moreover, it discusses the diagnosis and current approaches for the treatment of oral infections

    Comparison of predicted aquatic risks of pesticides used under different rice-farming strategies in the Mekong Delta, Vietnam

    No full text
    This study evaluates the risks of pesticides applied in rice-fish and rice farming, with and without integrated pest management (IPM) strategies, to non-target aquatic organisms in two provinces of the Mekong Delta, Vietnam. Pesticide inventories and application patterns were collected from 120 Vietnamese farmers through interviews. Risks were assessed using (1) Pesticide RIsks in the Tropics to Man, Environment, and Trade (PRIMET), a first-tier model, which calculates predicted environmental concentrations (PECs) of pesticides in the rice field, based on the compound’s physico-chemical properties and the application pattern, and then compares the PECs to safe concentrations based on literature data, and (2) species sensitivity distribution (SSD), a second-tier assessment model using species sensitivity distributions to calculate potentially affected fraction (PAF) of species based on the PECs from PRIMET. Our results show that several of the used insecticides pose a high risk to fish and arthropods and that the risks are higher among rice farmers than among rice-fish farmers. This study indicates that the PRIMET model in combination with SSDs offer suitable approaches to help farmers and plant protection staff to identify pesticides that may cause high risk to the environment and therefore should be substituted with safer alternatives

    Halogenzahlen der Fette

    No full text

    Osseointegration of biochemically modified implants in an osteoporosis rodent model

    Get PDF
    The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control) or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX) osteoporotic rats (n = 32/group). In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout). Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC), peri-implant bone area (BA), bone volume/tissue volume (BV/TV) and bone-mineral density (BMD) in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models

    Literatur

    No full text

    How effective are MPAs? Predation control and 'spill-in effects' in seagrass-coral reef lagoons under contrasting fishery management

    Get PDF
    Marine protected areas (MPAs) are heavily promoted as a panacea for marine conservation, but lagging and sometimes idiosyncratic protection effects bring their overall effectiveness into question. In Kenyan lagoons, seagrass overgrazing by the sea urchin Tripneustes gratilla has been linked to removal of predators, but overgrazing has also been observed within well-protected MPAs. In this study we investigated the effectiveness of Kenyan MPAs in facilitating predation control over sea urchins, particularly T gratilla, in relation to system (seagrass or coral reef), distance to reefs, and seagrass presence. A strong protection effect on urchin densities on reefs and a negative correlation between T gratilla density and predation pressure (from sea stars, fish and gastropods) in seagrass beds (r(2) = 0.345) confirmed the importance of top-down control. Yet there were no clear effects of protection or distance to reefs in seagrass beds, most likely due to (1) low predator densities in the recently established Mombasa MPA; (2) 'spill-in' of aggregated T gratilla into the older Watamu MPA (potentially facilitated by low predation pressure on the large urchins and nutrient enrichment); and (3) a potential buffering effect of seagrass canopies on predation, regardless of distance to reefs. Effects of seagrass presence differed between areas, but indicated that overgrazing in some areas could be self-regulated by inducing higher urchin mortality. As MPA effects appear to be system-, time- and site-specific, managers should also assess other more holistic approaches (e.g. banned fishing of urchin predators and reduced nutrient input from land runoff) to protect seagrasses
    corecore