15 research outputs found

    Human Vav1 Expression in Hematopoietic and Cancer Cell Lines Is Regulated by c-Myb and by CpG Methylation

    Get PDF
    Vav1 is a signal transducer protein that functions as a guanine nucleotide exchange factor for the Rho/Rac GTPases in the hematopoietic system where it is exclusively expressed. Recently, Vav1 was shown to be involved in several human malignancies including neuroblastoma, lung cancer, and pancreatic ductal adenocarcinoma (PDA). Although some factors that affect vav1 expression are known, neither the physiological nor pathological regulation of vav1 expression is completely understood. We demonstrate herein that mutations in putative transcription factor binding sites at the vav1 promoter affect its transcription in cells of different histological origin. Among these sites is a consensus site for c-Myb, a hematopoietic-specific transcription factor that is also found in Vav1-expressing lung cancer cell lines. Depletion of c-Myb using siRNA led to a dramatic reduction in vav1 expression in these cells. Consistent with this, co-transfection of c-Myb activated transcription of a vav1 promoter-luciferase reporter gene construct in lung cancer cells devoid of Vav1 expression. Together, these results indicate that c-Myb is involved in vav1 expression in lung cancer cells. We also explored the methylation status of the vav1 promoter. Bisulfite sequencing revealed that the vav1 promoter was completely unmethylated in human lymphocytes, but methylated to various degrees in tissues that do not normally express vav1. The vav1 promoter does not contain CpG islands in proximity to the transcription start site; however, we demonstrated that methylation of a CpG dinucleotide at a consensus Sp1 binding site in the vav1 promoter interferes with protein binding in vitro. Our data identify two regulatory mechanisms for vav1 expression: binding of c-Myb and CpG methylation of 5′ regulatory sequences. Mutation of other putative transcription factor binding sites suggests that additional factors regulate vav1 expression as well

    Sex-Based Differences in Incidence of Inflammatory Bowel Diseases-Pooled Analysis of Population-Based Studies From Western Countries.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowAlthough the incidence of inflammatory bowel diseases (IBDs) varies with age, few studies have examined variations between the sexes. We therefore used population data from established cohorts to analyze sex differences in IBD incidence according to age at diagnosis. We identified population-based cohorts of patients with IBD for which incidence and age data were available (17 distinct cohorts from 16 regions of Europe, North America, Australia, and New Zealand). We collected data through December 2016 on 95,605 incident cases of Crohn's disease (CD) (42,831 male and 52,774 female) and 112,004 incident cases of ulcerative colitis (UC) (61,672 male and 50,332 female). We pooled incidence rate ratios of CD and UC for the combined cohort and compared differences according to sex using random effects meta-analysis. Female patients had a lower risk of CD during childhood, until the age range of 10-14 years (incidence rate ratio, 0.70; 95% CI, 0.53-0.93), but they had a higher risk of CD thereafter, which was statistically significant for the age groups of 25-29 years and older than 35 years. The incidence of UC did not differ significantly for female vs male patients (except for the age group of 5-9 years) until age 45 years; thereafter, men had a significantly higher incidence of ulcerative colitis than women. In a pooled analysis of population-based studies, we found age at IBD onset to vary with sex. Further studies are needed to investigate mechanisms of sex differences in IBD incidence
    corecore