711 research outputs found
Rotating Metal Band Target for Pion Production at Muon Colliders and Neutrino Factories
A conceptual design is presented for a high power pion production target for
muon colliders and neutrino factories that is based around a rotating metal
band.Comment: 28 pages, 16 figures; to be published in Phys. Rev. ST Accel. Beam
Recommended from our members
Radiation Effects in Material Microstructure
Next generation nuclear power systems, high-power particle accelerators and space technology will inevitably rely on higher performance materials that will be able to function in the extreme environments of high irradiation, high temperatures, corrosion and stress. The ability of any material to maintain its functionality under exposure to harsh conditions is directly linked to the material structure at the nano- and micro-scales. Understanding of the underlying processes is key to the success of such undertakings. This paper presents experimental results of the effects of radiation exposure on several unique alloys, composites and crystals through induced changes in the physio-mechanical macroscopic properties
Recommended from our members
Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline
N/
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Quantitative identification of functional connectivity disturbances in neuropsychiatric lupus based on resting-state fMRI: a robust machine learning approach
Neuropsychiatric systemic lupus erythematosus (NPSLE) is an autoimmune entity comprised of heterogenous syndromes affecting both the peripheral and central nervous system. Research on the pathophysiological substrate of NPSLE manifestations, including functional neuroimaging studies, is extremely limited. The present study examined person-specific patterns of whole-brain functional connectivity in NPSLE patients (n = 44) and age-matched healthy control participants (n = 39). Static functional connectivity graphs were calculated comprised of connection strengths between 90 brain regions. These connections were subsequently filtered through rigorous surrogate analysis, a technique borrowed from physics, novel to neuroimaging. Next, global as well as nodal network metrics were estimated for each individual functional brain network and were input to a robust machine learning algorithm consisting of a random forest feature selection and nested cross-validation strategy. The proposed pipeline is data-driven in its entirety, and several tests were performed in order to ensure model robustness. The best-fitting model utilizing nodal graph metrics for 11 brain regions was associated with 73.5% accuracy (74.5% sensitivity and 73% specificity) in discriminating NPSLE from healthy individuals with adequate statistical power. Closer inspection of graph metric values suggested an increased role within the functional brain network in NSPLE (indicated by higher nodal degree, local efficiency, betweenness centrality, or eigenvalue efficiency) as compared to healthy controls for seven brain regions and a reduced role for four areas. These findings corroborate earlier work regarding hemodynamic disturbances in these brain regions in NPSLE. The validity of the results is further supported by significant associations of certain selected graph metrics with accumulated organ damage incurred by lupus, with visuomotor performance and mental flexibility scores obtained independently from NPSLE patients. View Full-Text
Keywords: neuropsychiatric systemic lupus erythematosus; rs-fMRI; graph theory; functional connectivity; surrogate data; machine learning; visuomotor ability; mental flexibilit
Recommended from our members
An Experimental Study of Radiation-Induced Demagnetization of Insertion Device Permanent Magnets
High brilliance in the 3GeV new light source NSLS II is obtained from the high magnetic fields in insertion devices (ID). The beam lifetime is limited to 3h by single Coulomb scattering in the Bunch (Touschek effect). This effect occurs everywhere around the circumference and there is unavoidable beam loss in the adjacent low aperture insertion devices. This raises the issue of degradation and damage of the permanent magnetic material by irradiation with high energy electrons and corresponding shower particles. It is expected that IDs, especially those in-vacuum, would experience changes resulting from exposure to gamma rays, x-rays, electrons and neutrons. By expanding an on-going material radiation damage study at BNL the demagnetization effect of irradiation consisting primarily of neutrons, gamma rays and electrons on a set of NdFeB magnets is studied. Integrated doses ranging from several Mrad to a few Grad were achieved at the BNL Isotope Facility with a 112 MeV, 90 {micro}A proton beam. Detailed information on dose distributions as well as on particle energy spectra on the NdFeB magnets was obtained in realistic simulations with the MARS15 Monte-Carlo code. This paper summarizes the results of this study
- …
