461 research outputs found
Wormholes as Black Hole Foils
We study to what extent wormholes can mimic the observational features of
black holes. It is surprisingly found that many features that could be thought
of as ``characteristic'' of a black hole (endowed with an event horizon) can be
closely mimicked by a globally static wormhole, having no event horizon. This
is the case for: the apparently irreversible accretion of matter down a hole,
no-hair properties, quasi-normal-mode ringing, and even the dissipative
properties of black hole horizons, such as a finite surface resistivity equal
to 377 Ohms. The only way to distinguish the two geometries on an
observationally reasonable time scale would be through the detection of
Hawking's radiation, which is, however, too weak to be of practical relevance
for astrophysical black holes. We point out the existence of an interesting
spectrum of quantum microstates trapped in the throat of a wormhole which could
be relevant for storing the information ``lost'' during a gravitational
collapse.Comment: 13 pages, no figures, Late
Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime
We analyse the concept of active gravitational mass for Reissner-Nordstrom
spacetime in terms of scalar polynomial invariants and the Karlhede
classification. We show that while the Kretschmann scalar does not produce the
expected expression for the active gravitational mass, both scalar polynomial
invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio
Hamiltonian Formulation of Two Body Problem in Wheeler-Feynman electrodynamics
A Hamiltonian formulation for the classical problem of electromagnetic
interaction of two charged relativistic particles is found.Comment: 22 pages, 8 Uuencoded Postscript figure
The optimal phase of the generalised Poincare dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps
Several studies have proposed that the shape of the Universe may be a
Poincare dodecahedral space (PDS) rather than an infinite, simply connected,
flat space. Both models assume a close to flat FLRW metric of about 30% matter
density. We study two predictions of the PDS model. (i) For the correct model,
the spatial two-point cross-correlation function, \ximc, of temperature
fluctuations in the covering space, where the two points in any pair are on
different copies of the surface of last scattering (SLS), should be of a
similar order of magnitude to the auto-correlation function, \xisc, on a
single copy of the SLS. (ii) The optimal orientation and identified circle
radius for a "generalised" PDS model of arbitrary twist , found by
maximising \ximc relative to \xisc in the WMAP maps, should yield . We optimise the cross-correlation at scales < 4.0 h^-1 Gpc
using a Markov chain Monte Carlo (MCMC) method over orientation, circle size
and . Both predictions were satisfied: (i) an optimal "generalised" PDS
solution was found, with a strong cross-correlation between points which would
be distant and only weakly correlated according to the simply connected
hypothesis, for two different foreground-reduced versions of the WMAP 3-year
all-sky map, both with and without the kp2 Galaxy mask: the face centres are
\phi
\in [0,2\pi]$, is about 6-9%.Comment: 20 pages, 22 figures, accepted in Astronomy & Astrophysics, software
available at http://adjani.astro.umk.pl/GPLdownload/dodec/ and MCMCs at
http://adjani.astro.umk.pl/GPLdownload/MCM
Scalable N-body code for the modelling of early-type galaxies
Early-type galaxies exhibit a wealth of photometric and dynamical structures.
These signatures are fossil records of their formation and evolution processes.
In order to examine these structures in detail, we build models aimed at
reproducing the observed photometry and kinematics. The developed method is a
generalization of the one introduced by Syer and Tremaine (1996), consisting in
an N-body representation, in which the weights of the particles are changing
with time. Our code is adapted for integral-field spectroscopic data, and is
able to reproduce the photometric as well as stellar kinematic data of observed
galaxies. We apply this technique on SAURON data of early-type galaxies, and
present preliminary results on NGC 3377.Comment: 6 pages, 2 figures. Original version printed in the Proceedings of
"Science perspective for 3D spectroscopy", 2005, Eds Kissler-Patig, Walsh,
Roth, ES0, Springe
A new two-sphere singularity in general relativity
The Florides solution, proposed as an alternative to the interior
Schwarzschild solution, represents a static and spherically symmetric geometry
with vanishing radial stresses. It is regular at the center, and is matched to
an exterior Schwarzschild solution. The specific case of a constant energy
density has been interpreted as the field inside an Einstein cluster. In this
work, we are interested in analyzing the geometry throughout the permitted
range of the radial coordinate without matching it to the Schwarzschild
exterior spacetime at some constant radius hypersurface. We find an interesting
picture, namely, the solution represents a three-sphere, whose equatorial
two-sphere is singular, in the sense that the curvature invariants and the
tangential pressure diverge. As far as we know, such singularities have not
been discussed before. In the presence of a large negative cosmological
constant (anti-de Sitter) the singularity is removed.Comment: 17 pages, 3 figure
The effect of the tachocline on differential rotation in the Sun
In this paper, we present a model for the effects of the tachocline on the
differential rotation in the solar convection zone. The mathematical technique
relies on the assumption that entropy is nearly constant ("well-mixed") in
isorotation surfaces both outside and within the tachocline. The resulting
solutions exhibit nontrivial features that strikingly resemble the true
tachocline isorotation contours in unexpected detail. This strengthens the
mathematical premises of the theory. The observed rotation pattern in the
tachocline shows strong quadrupolar structure, an important feature that is
explicitly used in constructing our solutions. The tachocline is treated
locally as an interior boundary layer of small but finite thickness, and an
explicit global solution is then constructed. A dynamical link can thus be
established between the internal jump in the angular velocity at the tachocline
and the spread of angular velocities observed near the solar surface. In
general, our results suggest that the bulk of the solar convection zone is in
thermal wind balance, and that simple quadrupolar stresses, local in radius,
mediate the tachocline transition from differential rotation to uniform
rotation in the radiative interior.Comment: 20 Pages, 4 figures, to appear in MNRA
Can one hear the shape of the Universe?
It is shown that the recent observations of NASA's explorer mission
"Wilkinson Microwave Anisotropy Probe" (WMAP) hint that our Universe may
possess a non-trivial topology. As an example we discuss the Picard space which
is stretched out into an infinitely long horn but with finite volume.Comment: 4 page
Newton-Hooke spacetimes, Hpp-waves and the cosmological constant
We show explicitly how the Newton-Hooke groups act as symmetries of the
equations of motion of non-relativistic cosmological models with a cosmological
constant. We give the action on the associated non-relativistic spacetimes and
show how these may be obtained from a null reduction of 5-dimensional
homogeneous pp-wave Lorentzian spacetimes. This allows us to realize the
Newton-Hooke groups and their Bargmann type central extensions as subgroups of
the isometry groups of the pp-wave spacetimes. The extended Schrodinger type
conformal group is identified and its action on the equations of motion given.
The non-relativistic conformal symmetries also have applications to
time-dependent harmonic oscillators. Finally we comment on a possible
application to Gao's generalization of the matrix model.Comment: 21 page
- …