711 research outputs found
Direct observation of domain wall structures in curved permalloy wires containing an antinotch
The formation and field response of head-to-head domain walls in curved permalloy wires, fabricated to contain a single antinotch, have been investigated using Lorentz microscopy. High spatial resolution maps of the vector induction distribution in domain walls close to the antinotch have been derived and compared with micromagnetic simulations. In wires of 10 nm thickness the walls are typically of a modified asymmetric transverse wall type. Their response to applied fields tangential to the wire at the antinotch location was studied. The way the wall structure changes depends on whether the field moves the wall away from or further into the notch. Higher fields are needed and much more distorted wall structures are observed in the latter case, indicating that the antinotch acts as an energy barrier for the domain wal
Direct current control of three magnon scattering processes in spin-valve nanocontacts
We have investigated the generation of spin waves in the free layer of an
extended spin-valve structure with a nano-scaled point contact driven by both
microwave and direct electric current using Brillouin light scattering
microscopy. Simultaneously with the directly excited spin waves, strong
nonlinear effects are observed, namely the generation of eigenmodes with
integer multiple frequencies (2 \emph{f}, 3 \emph{f}, 4 \emph{f}) and modes
with non-integer factors (0.5 \emph{f}, 1.5 \emph{f}) with respect to the
excitation frequency \emph{f}. The origin of these nonlinear modes is traced
back to three magnon scattering processes. The direct current influence on the
generation of the fundamental mode at frequency \emph{f} can be related to the
spin-transfer torque, while the efficiency of three-magnon-scattering processes
is controlled by the Oersted field as an additional effect of the direct
current
Recommended from our members
Feedback damper system for quadrupole oscillations after transition at RHIC.
The heavy ion beam at RHIC undergoes strong quadrupole oscillations just after it crosses transition, which leads to an increase in bunch length making rebucketing less effective. A feedback system was built to damp these quadrupole oscillations and in this paper the characteristics of the system and the results obtained are presented and discussed
Facial expressions depicting compassionate and critical emotions: the development and validation of a new emotional face stimulus set
Attachment with altruistic others requires the ability to appropriately process affiliative and kind facial cues. Yet there is no stimulus set available to investigate such processes. Here, we developed a stimulus set depicting compassionate and critical facial expressions, and validated its effectiveness using well-established visual-probe methodology. In Study 1, 62 participants rated photographs of actors displaying compassionate/kind and critical faces on strength of emotion type. This produced a new stimulus set based on N = 31 actors, whose facial expressions were reliably distinguished as compassionate, critical and neutral. In Study 2, 70 participants completed a visual-probe task measuring attentional orientation to critical and compassionate/kind faces. This revealed that participants lower in self-criticism demonstrated enhanced attention to compassionate/kind faces whereas those higher in self-criticism showed no bias. To sum, the new stimulus set produced interpretable findings using visual-probe methodology and is the first to include higher order, complex positive affect displays
- âŠ