4,855 research outputs found

    Locomotive and reptation motion induced by internal force and friction

    Full text link
    We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-elements model, we construct a model which exhibits a bipedal motion similar to kinesin's motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model,. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.Comment: 10 pages, 7 figur

    Semiclassical Analysis of M2-brane in AdS_4 x S^7 / Z_k

    Full text link
    We start from the classical action describing a single M2-brane on AdS_4 x S^7/ Z_k and consider semiclassical fluctuaitions around a static, 1/2 BPS configuration whose shape is AdS_2 x S^1. The internal manifold S^7/ Z_k is described as a U(1) fibration over CP^3 and the static configuration is wrapped on the U(1) fiber. Then the configuration is reduced to an AdS_2 world-sheet of type IIA string on AdS_4 x CP^3 through the Kaluza-Klein reduction on the S^1. It is shown that the fluctuations form an infinite set of N=1 supermultiplets on AdS_2, for k=1,2. The set is invariant under SO(8) which may be consistent with N=8 supersymmetry on AdS_2. We discuss the behavior of the fluctuations around the boundary of AdS_2 and its relation to deformations of Wilson loop operator.Comment: 27 pages, v2: references added, v3: major revision including the clarification of k=2 case, references added, version to appear in JHE

    3-D open boundary magnetic field analysis using infinite element based on hybrid finite element method

    Get PDF
    A method for analyzing 3-D open-boundary magnetic field problems using infinite elements has been developed. The infinite problem has the advantage that the bandwidth of the coefficient matrix and the number of unknown variables are reduced. Moreover, no experience is necessary in determining decay parameters. The effectiveness of the infinite-element method is illustrated by the accuracy and the CPU time obtained when various boundary conditions are applied</p

    Cascade Failure in a Phase Model of Power Grids

    Full text link
    We propose a phase model to study cascade failure in power grids composed of generators and loads. If the power demand is below a critical value, the model system of power grids maintains the standard frequency by feedback control. On the other hand, if the power demand exceeds the critical value, an electric failure occurs via step out (loss of synchronization) or voltage collapse. The two failures are incorporated as two removal rules of generator nodes and load nodes. We perform direct numerical simulation of the phase model on a scale-free network and compare the results with a mean-field approximation.Comment: 7 pages, 2 figure

    Disordered Regimes of the one-dimensional complex Ginzburg-Landau equation

    Full text link
    I review recent work on the ``phase diagram'' of the one-dimensional complex Ginzburg-Landau equation for system sizes at which chaos is extensive. Particular attention is paid to a detailed description of the spatiotemporally disordered regimes encountered. The nature of the transition lines separating these phases is discussed, and preliminary results are presented which aim at evaluating the phase diagram in the infinite-size, infinite-time, thermodynamic limit.Comment: 14 pages, LaTeX, 9 figures available by anonymous ftp to amoco.saclay.cea.fr in directory pub/chate, or by requesting them to [email protected]

    M-theory on a Time-dependent Plane-wave

    Full text link
    We propose a matrix model on a homogeneous plane-wave background with 20 supersymmetries. This background is anti-Mach type and is equivalent to the time-dependent background. We study supersymmetries in this theory and calculate the superalgebra. The vacuum energy of the abelian part is also calculated. In addition we find classical solutions such as graviton solution, fuzzy sphere and hyperboloid.Comment: 19pages, no figures, LaTeX, JHEP3.cl

    Nondegenerate Super-Anti-de Sitter Algebra and a Superstring Action

    Get PDF
    We construct an Anti-de Sitter(AdS) algebra in a nondegenerate superspace. Based on this algebra we construct a covariant kappa-symmetric superstring action, and we examine its dynamics: Although this action reduces to the usual Green-Schwarz superstring action in flat limit, the auxiliary fermionic coordinates of the nondegenerate superspace becomes dynamical in the AdS background.Comment: Latex, 12 pages, explanations added, version to be published in Phys. Rev.

    Lowest weight representations of super Schrodinger algebras in low dimensional spacetime

    Full text link
    We investigate the lowest weight representations of the super Schrodinger algebras introduced by Duval and Horvathy. This is done by the same procedure as the semisimple Lie algebras. Namely, all singular vectors within the Verma modules are constructed explicitly then irreducibility of the associated quotient modules is studied again by the use of singular vectors. We present the classification of irreducible Verma modules for the super Schrodinger algebras in (1+1) and (2+1) dimensional spacetime with N = 1, 2 extensions.Comment: 10pages, talk given at GROUP28 conference New Castle 26-30th July 2010, reference adde
    • …
    corecore