21 research outputs found

    Monitoring and Quality Control of Diesel Fraction Production Process

    Get PDF
    In this work the mathematical model of diesel fraction and atmospheric gasoil catalytic dewaxing process has been developed. Also the pattern of applying the created model to solving such problems as monitoring and quality control of diesel fraction production in the catalytic dewaxing process. It has been represented that to meet such challenges, the model should take into consideration thermodynamic and kinetic laws of hydrocarbon conversion on the catalyst surface, and instability factors that are specified by catalyst deactivation. The developed model allows controlling the quality of obtained diesel fraction depending on feed and temperature regime in the reactor. The value of model calculation absolute error does not exceed 2%, which corroborates the adequacy of the model to actual process. The computations using the model have shown that to provide the desired product yield (not less than 40% wt. of overall yield of the unit products) of programmed quality (cold filtering plugging point not higher than minus 34°C for winter diesel fuels and not lower than minus 40°C for arctic ones) at long-time catalyst operation (during 4 years), it is necessary to sustain the reactor temperature at the average level of 19°C higher than when working with fresh catalyst. This must be done to compensate catalyst activity loss due to its deactivation

    Monitoring and Quality Control of Diesel Fraction Production Process

    Get PDF
    In this work the mathematical model of diesel fraction and atmospheric gasoil catalytic dewaxing process has been developed. Also the pattern of applying the created model to solving such problems as monitoring and quality control of diesel fraction production in the catalytic dewaxing process. It has been represented that to meet such challenges, the model should take into consideration thermodynamic and kinetic laws of hydrocarbon conversion on the catalyst surface, and instability factors that are specified by catalyst deactivation. The developed model allows controlling the quality of obtained diesel fraction depending on feed and temperature regime in the reactor. The value of model calculation absolute error does not exceed 2%, which corroborates the adequacy of the model to actual process. The computations using the model have shown that to provide the desired product yield (not less than 40% wt. of overall yield of the unit products) of programmed quality (cold filtering plugging point not higher than minus 34°C for winter diesel fuels and not lower than minus 40°C for arctic ones) at long-time catalyst operation (during 4 years), it is necessary to sustain the reactor temperature at the average level of 19°C higher than when working with fresh catalyst. This must be done to compensate catalyst activity loss due to its deactivation

    Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development

    Get PDF
    The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model

    Development of Molecular Probes for the Identification of Extra Interaction Sites in the Mid-Gorge and Peripheral Sites of Butyrylcholinesterase (BuChE). Rational Design of Novel, Selective, and Highly Potent BuChE Inhibitors

    No full text
    Tacrine heterobivalent ligands were designed as novel and reversible inhibitors of cholinesterases. On the basis of the investigation of the active site gorge topology of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) and by using flexible docking procedures, molecular modeling studies formulated the hypothesis of extra interaction sites in the active gorge of hBuChE, namely, a mid-gorge interaction site and a peripheral interaction site. The design strategy led to novel BuChE inhibitors, balancing potency and selectivity. Among the compounds identified, the heterobivalent ligand 4m, containing an amide nitrogen and a sulfur atom at the 8-membered tether level, is one of the most potent and selective BuChE inhibitors described to date. The novel inhibitors, bearing postulated key features, validated the hypothesis of the presence of extra interaction sites within the hBuChE active site gorge
    corecore