407 research outputs found

    Coupling ideality of free electrons with photonic integrated waveguides

    Get PDF
    Recently, integrated photonics has brought new capabilities to electron microscopy and been used to demonstrate efficient electron phase modulation and electron-photon correlations. Here, we quantitatively analyze the interaction strength between a free electron and a photonic integrated circuit with a heterogeneous structure. We adopt a dissipative QED treatment and show that with proper electron beam positioning and waveguide geometry, one can achieve near-unity coupling ideality to a well-defined spatial-temporal waveguide mode. Furthermore, we show that the frequency and waveform of the coupled mode can be tailored to the application. These features show that photonic integrated waveguides are a promising platform for free-electron quantum optics with applications like high-fidelity electron-photon entanglement, heralded single-electron and photon state synthesis

    Tailored nanophononic wavefield in a patterned bilayer system probed by ultrafast convergent beam electron diffraction

    Get PDF
    Optically excited nanostructures provide a versatile platform for the generation of confined nanophononic fields with potential (non-)linear interactions between different degrees of freedom. Control of resonance frequencies and the selective excitation of acoustic modes still remains challenging due to the interplay of nanoscale geometries and interfacial coupling mechanisms. Here, we demonstrate that a semiconductor membrane patterned with a platinum stripe acts as a tailored source for high-frequency strain waves generating a multi-modal distortion wave propagating through the membrane. To locally monitor the ultrafast structural dynamics at a specific distance from the deposited metal stripe, we employ ultrafast convergent beam electron diffraction in a laser-pump/electron-probe scheme. Experimentally observed acoustic deformations are reproduced by numerical simulations in a continuous medium model, revealing a spatiotemporal evolution of the lattice dynamics dominated by local rotations with minor strain and shear contributions

    J. Cell. Sci.

    Get PDF
    Electrophysiological studies demonstrate that transient receptor potential vanilloid subtype 1 (TRPV1) is involved in neuronal transmission. Although it is expressed in the peripheral as well as the central nervous system, the questions remain whether TRPV1 is present in synaptic structures and whether it is involved in synaptic processes. In the present study we gathered evidence that TRPV1 can be detected in spines of cortical neurons, that it colocalizes with both pre- and postsynaptic proteins, and that it regulates spine morphology. Moreover, TRPV1 is also present in biochemically prepared synaptosomes endogenously. In F11 cells, a cell line derived from dorsal-root-ganglion neurons, TRPV1 is enriched in the tips of elongated filopodia and also at sites of cell-cell contact. In addition, we also detected TRPV1 in synaptic transport vesicles, and in transport packets within filopodia and neurites. Using FM4-64 dye, we demonstrate that recycling and/or fusion of these vesicles can be rapidly modulated by TRPV1 activation, leading to rapid reorganization of filopodial structure. These data suggest that TRPV1 is involved in processes such as neuronal network formation, synapse modulation and release of synaptic transmitters

    Ultrafast electron microscopy for probing magnetic dynamics

    Get PDF
    The spatial features of ultrafast changes in magnetic textures carry detailed information on microscopic couplings and energy transport mechanisms. Electrons excel in imaging such picosecond or shorter processes at nanometer length scales. We review the range of physical interactions that produce ultrafast magnetic contrast with electrons, and specifically highlight the recent emergence of ultrafast Lorentz transmission electron microscopy. From the fundamental processes involved in demagnetization at extremely short timescales to skyrmion-based devices, we show that ultrafast electron imaging will be a vital tool in solving pressing problems in magnetism and magnetic materials where nanoscale inhomogeneity, microscopic field measurement, non-equilibrium behavior or dynamics are involved

    Light-Induced Metastable Magnetic Texture Uncovered by in situ Lorentz Microscopy

    Get PDF
    Magnetic topological defects, such as vortices and Skyrmions, can be stabilized as equilibrium structures in nanoscale geometries and by tailored intrinsic magnetic interactions. Here, employing rapid quench conditions, we report the observation of a light-induced metastable magnetic texture, which consists of a dense nanoscale network of vortices and antivortices. Our results demonstrate the emergence of ordering mechanisms in quenched optically driven systems, which may give a general access to novel magnetic structures on nanometer length scales

    Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields

    Get PDF
    The interplay between free electrons, light, and matter offers unique prospects for space, time, and energy resolved optical material characterization, structured light generation, and quantum information processing. Here, we study the nanoscale features of spontaneous and stimulated electron–photon interactions mediated by localized surface plasmon resonances at the tips of a gold nanostar using electron energy-loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL), and photon-induced near-field electron microscopy (PINEM). Supported by numerical electromagnetic boundary-element method (BEM) calculations, we show that the different coupling mechanisms probed by EELS, CL, and PINEM feature the same spatial dependence on the electric field distribution of the tip modes. However, the electron–photon interaction strength is found to vary with the incident electron velocity, as determined by the spatial Fourier transform of the electric near-field component parallel to the electron trajectory. For the tightly confined plasmonic tip resonances, our calculations suggest an optimum coupling velocity at electron energies as low as a few keV. Our results are discussed in the context of more complex geometries supporting multiple modes with spatial and spectral overlap. We provide fundamental insights into spontaneous and stimulated electron-light-matter interactions with key implications for research on (quantum) coherent optical phenomena at the nanoscale

    An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons

    Full text link
    We report the design, fabrication and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor > 45 % is demonstrated at a wavelength of 780 nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.Comment: The final publication is available at http://www.springerlink.com. http://dx.doi.org/10.1007/s11468-011-9303-

    Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Get PDF
    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams
    • …
    corecore