396 research outputs found

    Reduction of Soil-Borne Plant Pathogens Using Lime and Ammonia Evolved from Broiler Litter

    Get PDF
    In laboratory and micro-plots simulations and in a commercial greenhouse, soil ammonia (NH3) and pH were manipulated as means to control soil-borne fungal pathogens and nematodes. Soil ammonification capacity was increased by applying low C/N ratio broiler litter at 1–8% (w/w). Soil pH was increased using lime at 0.5–1% (w/w). This reduced fungi (Fusarium oxysporum f. sp. dianthi and Sclerotium rolfsii) and root-knot nematode (Meloidogyne javanica) in lab tests below detection. In a commercial greenhouse, broiler litter (25 Mg ha−1) and lime (12.5 Mg ha−1) addition to soil in combination with solarization significantly reduced M. javanica induced root galling of tomato test plants from 47% in the control plots (solarization only) to 7% in treated plots. Root galling index of pepper plants, measured 178 days after planting in the treated and control plots, were 0.8 and 1.5, respectively, which was statistically significantly different. However, the numbers of nematode juveniles in the root zone soil counted 83 and 127 days after pepper planting were not significantly different between treatments. Pepper fruit yield was not different between treatments. Soil disinfection and curing was completed within one month, and by the time of bell-pepper planting the pH and ammonia values were normal

    Lithium-6 from Solar Flares

    Get PDF
    By introducing a hitherto ignored Li-6 producing process, due to accelerated He-3 reactions with He-4, we show that accelerated particle interactions in solar flares produce much more Li-6 than Li-7. By normalizing our calculations to gamma-ray data we demonstrate that the Li-6 produced in solar flares, combined with photospheric Li-7, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.Comment: latex 9 pages, 2 figures, ApJ Letters in pres

    Adaptive Importance Sampling Simulation of Queueing Networks

    Get PDF
    In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a function of the content of the buffers, and the change of measure is determined using a cross-entropy-based adaptive procedure. This method yields asymptotically efficient estimation of overflow probabilities of queueing models for which it has been shown that methods using a stateindependent change of measure are not asymptotically efficient. Numerical results demonstrating the effectiveness of the method are presented as well

    Width of percolation transition in complex networks

    Full text link
    It is known that the critical probability for the percolation transition is not a sharp threshold, actually it is a region of non-zero width Δpc\Delta p_c for systems of finite size. Here we present evidence that for complex networks Δpc∌pcl\Delta p_c \sim \frac{p_c}{l}, where l∌NÎœoptl \sim N^{\nu_{opt}} is the average length of the percolation cluster, and NN is the number of nodes in the network. For Erd\H{o}s-R\'enyi (ER) graphs Îœopt=1/3\nu_{opt} = 1/3, while for scale-free (SF) networks with a degree distribution P(k)∌k−λP(k) \sim k^{-\lambda} and 3<λ<43<\lambda<4, Îœopt=(λ−3)/(λ−1)\nu_{opt} = (\lambda-3)/(\lambda-1). We show analytically and numerically that the \textit{survivability} S(p,l)S(p,l), which is the probability of a cluster to survive ll chemical shells at probability pp, behaves near criticality as S(p,l)=S(pc,l)⋅exp[(p−pc)l/pc]S(p,l) = S(p_c,l) \cdot exp[(p-p_c)l/p_c]. Thus for probabilities inside the region ∣p−pc∣<pc/l|p-p_c| < p_c/l the behavior of the system is indistinguishable from that of the critical point

    Optimal Paths in Complex Networks with Correlated Weights: The World-wide Airport Network

    Get PDF
    We study complex networks with weights, wijw_{ij}, associated with each link connecting node ii and jj. The weights are chosen to be correlated with the network topology in the form found in two real world examples, (a) the world-wide airport network, and (b) the {\it E. Coli} metabolic network. Here wij∌xij(kikj)αw_{ij} \sim x_{ij} (k_i k_j)^\alpha, where kik_i and kjk_j are the degrees of nodes ii and jj, xijx_{ij} is a random number and α\alpha represents the strength of the correlations. The case α>0\alpha > 0 represents correlation between weights and degree, while α<0\alpha < 0 represents anti-correlation and the case α=0\alpha = 0 reduces to the case of no correlations. We study the scaling of the lengths of the optimal paths, ℓopt\ell_{\rm opt}, with the system size NN in strong disorder for scale-free networks for different α\alpha. We calculate the robustness of correlated scale-free networks with different α\alpha, and find the networks with α<0\alpha < 0 to be the most robust networks when compared to the other values of α\alpha. We propose an analytical method to study percolation phenomena on networks with this kind of correlation. We compare our simulation results with the real world-wide airport network, and we find good agreement

    Numerical evaluation of the upper critical dimension of percolation in scale-free networks

    Full text link
    We propose a numerical method to evaluate the upper critical dimension dcd_c of random percolation clusters in Erd\H{o}s-R\'{e}nyi networks and in scale-free networks with degree distribution P(k)∌k−λ{\cal P}(k) \sim k^{-\lambda}, where kk is the degree of a node and λ\lambda is the broadness of the degree distribution. Our results report the theoretical prediction, dc=2(λ−1)/(λ−3)d_c = 2(\lambda - 1)/(\lambda - 3) for scale-free networks with 3<λ<43 < \lambda < 4 and dc=6d_c = 6 for Erd\H{o}s-R\'{e}nyi networks and scale-free networks with λ>4\lambda > 4. When the removal of nodes is not random but targeted on removing the highest degree nodes we obtain dc=6d_c = 6 for all λ>2\lambda > 2. Our method also yields a better numerical evaluation of the critical percolation threshold, pcp_c, for scale-free networks. Our results suggest that the finite size effects increases when λ\lambda approaches 3 from above.Comment: 10 pages, 5 figure

    Limited path percolation in complex networks

    Full text link
    We study the stability of network communication after removal of q=1−pq=1-p links under the assumption that communication is effective only if the shortest path between nodes ii and jj after removal is shorter than aℓij(a≄1)a\ell_{ij} (a\geq1) where ℓij\ell_{ij} is the shortest path before removal. For a large class of networks, we find a new percolation transition at p~c=(Îșo−1)(1−a)/a\tilde{p}_c=(\kappa_o-1)^{(1-a)/a}, where Îșo≡/\kappa_o\equiv / and kk is the node degree. Below p~c\tilde{p}_c, only a fraction NÎŽN^{\delta} of the network nodes can communicate, where ή≡a(1−∣log⁥p∣/log⁥(Îșo−1))<1\delta\equiv a(1-|\log p|/\log{(\kappa_o-1)}) < 1, while above p~c\tilde{p}_c, order NN nodes can communicate within the limited path length aℓija\ell_{ij}. Our analytical results are supported by simulations on Erd\H{o}s-R\'{e}nyi and scale-free network models. We expect our results to influence the design of networks, routing algorithms, and immunization strategies, where short paths are most relevant.Comment: 11 pages, 3 figures, 1 tabl

    Percolation theory applied to measures of fragmentation in social networks

    Full text link
    We apply percolation theory to a recently proposed measure of fragmentation FF for social networks. The measure FF is defined as the ratio between the number of pairs of nodes that are not connected in the fragmented network after removing a fraction qq of nodes and the total number of pairs in the original fully connected network. We compare FF with the traditional measure used in percolation theory, P∞P_{\infty}, the fraction of nodes in the largest cluster relative to the total number of nodes. Using both analytical and numerical methods from percolation, we study Erd\H{o}s-R\'{e}nyi (ER) and scale-free (SF) networks under various types of node removal strategies. The removal strategies are: random removal, high degree removal and high betweenness centrality removal. We find that for a network obtained after removal (all strategies) of a fraction qq of nodes above percolation threshold, P∞≈(1−F)1/2P_{\infty}\approx (1-F)^{1/2}. For fixed P∞P_{\infty} and close to percolation threshold (q=qcq=q_c), we show that 1−F1-F better reflects the actual fragmentation. Close to qcq_c, for a given P∞P_{\infty}, 1−F1-F has a broad distribution and it is thus possible to improve the fragmentation of the network. We also study and compare the fragmentation measure FF and the percolation measure P∞P_{\infty} for a real social network of workplaces linked by the households of the employees and find similar results.Comment: submitted to PR

    The Energy of a Plasma in the Classical Limit

    Get PDF
    When \lambda_{T} << d_{T}, where \lambda_{T} is the de Broglie wavelength and d_{T}, the distance of closest approach of thermal electrons, a classical analysis of the energy of a plasma can be made. In all the classical analysis made until now, it was assumed that the frequency of the fluctuations \omega << T (k_{B}=\hbar=1). Using the fluctuation-dissipation theorem, we evaluate the energy of a plasma, allowing the frequency of the fluctuations to be arbitrary. We find that the energy density is appreciably larger than previously thought for many interesting plasmas, such as the plasma of the Universe before the recombination era.Comment: 10 pages, 2 figures, accepted for publication in Phys.Rev.Let

    Counterintuitive transitions in multistate curve crossing involving linear potentials

    Get PDF
    Two problems incorporating a set of horizontal linear potentials crossed by a sloped linear potential are analytically solved and compared with numerical results: (a) the case where boundary conditions are specified at the ends of a finite interval, and (b) the case where the sloped linear potential is replaced by a piecewise-linear sloped potential and the boundary conditions are specified at infinity. In the approximation of small gaps between the horizontal potentials, an approach similar to the one used for the degenerate problem (Yurovsky V A and Ben-Reuven A 1998 J. Phys. B 31,1) is applicable for both problems. The resulting scattering matrix has a form different from the semiclassical result obtained by taking the product of Landau-Zener amplitudes. Counterintuitive transitions involving a pair of successive crossings, in which the second crossing precedes the first one along the direction of motion, are allowed in both models considered here.Comment: LaTeX 2.09 using ioplppt.sty and psfig.sty, 16 pages with 5 figures. Submitted to J. Phys.
    • 

    corecore