469 research outputs found
Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces: Surfactant Mixtures
The adsorption at the interface between an aqueous solution of several
surface-active agents and another fluid (air or oil) phase is addressed
theoretically. We derive the kinetic equations from a variation of the
interfacial free energy, solve them numerically and provide an analytic
solution for the simple case of a linear adsorption isotherm. Calculating
asymptotic solutions analytically, we find the characteristic time scales of
the adsorption process and observe the behavior of the system at various
temporal stages. In particular, we relate the kinetic behavior of the mixture
to the properties of its individual constituents and find good agreement with
experiments. In the case of kinetically limited adsorption, the mixture
kinetics is found to be considerably different from that of the
single-surfactant solutions because of strong coupling between the species.Comment: 19 pages, 7 figures, to be published in Langmui
Near - surface study of a hot spring site in Fiji
A geophysical investigation of a hot spring system located in Rabulu, Fiji, was carried out from October 2014 to March 2015. The investigation covered a survey area of 6075 m2. Self-potential (SP), ground temperature and soil carbon dioxide (CO2) concentrations were measured and investigated for their distribution characteristics and inter-linkages. Results indicated obvious anomalous zone at the hot spring discharge site. The SP profile analysis highlighted thermal water upwelling zones and elevation-driven subsurface groundwater pathways. Measurement of subsurface temperatures up to 1 m depths revealed increasing temperatures, indicating potentially high thermal gradients in the area. Surface soil CO2 distributions also agreed with SP and ground temperature results. The overall result of the study demonstrated that synchronised measurements of SP, ground temperature and soil CO2 can be instrumental in identifying anomalous zones near the hot spring sites. Other parameters such as spring water temperature, discharge rate and energy flux estimates from the spring were calculated and analysed. The high-dense multi-parameter data coverage allowed interpretation of geothermal features at a scale never conducted in Fiji before. The near-surface investigations reported in this study corroborate previously suggested steady geothermal activity in the region, deserving further detailed investigation
Rebar corrosion due to chlorides in synergy with sodium, potassium, and magnesium
The ability of steel reinforced concrete to withstand long service life is ensured by the strong binding
between the concrete and the rebar. Although rebar corrosion deterioration in the presence of chlorides
is well known, it is important to note that these anions are never present in isolation, i.e., other cations are
also present within the exposed environment. Consequently, a study was conducted to investigate the
rebar deterioration due to chlorides in the presence of different cations. A well-controlled laboratory experiment for assessing the corrosivity of sodium chloride, potassium chloride and magnesium chloride
was conducted. The galvanostatic pulse technique was used to investigate the concrete-steel interfacial structure, which was modelled after a modified Randles circuit. Analysis revealed influences of the associated
cations during the rebar corrosion process. A normalisation approach was used to compare chloride
attacks on the rebar due to different salt solutions. Results suggest that chloride attacks in the
presence of sodium cations are relatively corrosive
Recommended from our members
Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties
Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 1019 to 1020 cm−3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 1019 to 1014 cm−3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.Chemistry and Chemical Biolog
Homeobox genes encoding WOX transcription factors in the flowering parasitic plant Monotropa hypopitys
The formation and maintenance of plant stem cell populations are controlled by the WOX family of homeobox-containing transcription factors. The evolution of WOX genes is considered to be one of the main reasons for flower morphology and plant architecture diversity. The stem cell regulation mechanism is considered to be conserved among flowering plants and most thoroughly studied in Arabidopsis thaliana as a model. The angiosperms morphological diversity implies that there are species-specific features inherent to this mechanism, while the basic signaling is maintained. The unique flowering achlorophyllous mycoheterotrophic plant Monotropa hypopitys obtains nutrients from the tree roots through the mycorrhizal symbiosis. In inductive conditions, the reproductive stem with bracts and an inflorescence at the top is developed from an adventitious root bud. Like other plants, M. hypopitys forms the inflorescence, flower and root meristems, presumably using conserved mechanisms regulating stem cell niche. The study of M. hypopitys homeobox genes should contribute to the knowledge about the function of WOX transcription factors and further understanding of the stem cells control mechanisms in mycoheterotrophic species. The aim of the present study was to analyze M. hypopitys root, bracts and flower transcriptomes obtained from two individual flowering plants. In total, five WOX genes have been identified and characterized by their structure, phylogeny, expression pattern, and possible functions. The assumption is that the MhyWUS1 and MhyWUS2 genes maintain the stem cell population in the inflorescence and flower meristems, MhyWOX13 has a role in the control of root stem cell niche, seed pod formation, flowering initiation, and basic cellular processes, MhyWOX4 functions in the control of cambium stem cells, and MhyWOX2 participates in the differentiation of egg cells and zygotes
Identification and characterization of mRNAs of receptor-like kinases MhyGSO1 and MhyGSO2 in flowering parasitic plant Monotropa hypopitys
Plant organ formation is based on the balance of the programmed cell division and positional differentiation maintained by intercellular communication mediated by signaling molecules and receptors. In Arabidopsis thaliana, two paralogous leucine-rich repeat receptor-like kinases, GASSHO1 and GASSHO2, redundantly participate in the regulation of various root cells identity and functioning and the proper epidermis patterning. The GASSHO genes are characterized mainly in A. thaliana. Their significance in combination with the conservation of basic developmental processes justifies the study of GASSHO kinases in other plant species with different nutrition and developmental features. The aim of this work was to identify the GASSHO genes in an angiosperm plant, pinesap Monotropa hypopitys, which is a non-photosynthetic achlorophyllous mycoheterotroph. In different tissues (roots with buds, bracts, and flowers) of two individual plants at the late flowering stage, the transcriptomic data search identified 3’-partial mRNAs of two paralogous genes, MhyGASSHO1 (MhyGSO1) and MhyGSO2. Structural analysis of the encoded amino acid sequences revealed conserved domains, specific for leucine-rich repeat receptor-like kinases, in MhyGSO1, and the N-terminal leucine-rich domain in MhyGSO2. Phylogenetic analysis of MhyGASSHOs confirmed their homology with GSO1 and GSO2 kinases of the Rosids and Asterids representatives. The closest homologues of MhyGSO1 and MhyGSO2 were GSO1 and GSO2, respectively, of the Solanales members (Asterids). Quantification of the MhyGSO1 and MhyGSO2 transcripts revealed expression of both genes in flowers and bracts, and MhyGSO1 – also in roots with buds. In combination with known data about GSO1 and GSO2, it allowed us to assume the redundant activity of MhyGASSHO paralogues in signaling pathways, in particular, in response to exogenous sucrose and in development of reproductive organs and embryonic inflorescences
Specific features of telomerase RNA from Hansenula polymorpha.
Telomerase, a ribonucleoprotein, is responsible for the maintenance of eukaryotic genome integrity by replicating the ends of chromosomes. The core enzyme comprises the conserved protein TERT and an RNA subunit (TER) that, in contrast, displays large variations in size and structure. Here, we report the identification of the telomerase RNA from thermotolerant yeast Hansenula polymorpha (HpTER) and describe its structural features. We show further that the H. polymorpha telomerase reverse transcribes the template beyond the predicted boundary and adds a nontelomeric dT in vitro. Sequencing of the chromosomal ends revealed that this nucleotide is specifically present as a terminal nucleotide at the 3' end of telomeres. Mutational analysis of HpTER confirmed that the incorporation of dT functions to limit telomere length in this species
Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions
Malignant gliomas contain a population of self-renewing tumorigenic stem-like cells; however, it remains unclear how these glioma stem cells (GSCs) self-renew or generate cellular diversity at the single-cell level. Asymmetric cell division is a proposed mechanism to maintain cancer stem cells, yet the modes of cell division that GSCs utilize remain undetermined. Here, we used single-cell analyses to evaluate the cell division behavior of GSCs. Lineage-tracing analysis revealed that the majority of GSCs were generated through expansive symmetric cell division and not through asymmetric cell division. The majority of differentiated progeny was generated through symmetric pro-commitment divisions under expansion conditions and in the absence of growth factors, occurred mainly through asymmetric cell divisions. Mitotic pair analysis detected asymmetric CD133 segregation and not any other GSC marker in a fraction of mitoses, some of which were associated with Numb asymmetry. Under growth factor withdrawal conditions, the proportion of asymmetric CD133 divisions increased, congruent with the increase in asymmetric cell divisions observed in the lineage-tracing studies. Using single-cell-based observation, we provide definitive evidence that GSCs are capable of different modes of cell division and that the generation of cellular diversity occurs mainly through symmetric cell division, not through asymmetric cell division
BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.)
Background: Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. Result: Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with 250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. Conclusion: BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing.Daniela Schulte, Ruvini Ariyadasa, Bujun Shi, Delphine Fleury, Chris Saski, Michael Atkins, Pieter deJong, Cheng-Cang Wu, Andreas Graner, Peter Langridge and Nils Stei
- …