123 research outputs found

    Recombinant humanised anti-HER2/neu antibody (Herceptin®) induces cellular death of glioblastomas

    Get PDF
    Glioblastoma multiforme (GBM) remains the most devastating primary tumour in neuro-oncology. Targeting of the human epithelial receptor type 2 (HER2)-neu receptor by specific antibodies is a recent well-established therapy for breast tumours. Human epithelial receptor type 2/neu is a transmembrane tyrosine/kinase receptor that appears to be important for the regulation of cancer growth. Human epithelial receptor type 2/neu is not expressed in the adult central nervous system, but its expression increases with the degree of astrocytoma anaplasia. The specificity of HER2/neu for tumoral astrocytomas leads us to study in vitro treatment of GBM with anti-HER2/neu antibody. We used human GBM cell lines expressing HER2/neu (A172 express HER2/neu more than U251MG) or not (U87MG) and monoclonal humanised antibody against HER2/neu (Herceptin®). Human epithelial receptor type 2/neu expression was measured by immunohistochemistry and flow cytometry. Direct antibody effect, complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity were evaluated by different cytometric assays. We have shown, for the first time, the ability of anti-HER2/neu antibodies to induce apoptosis and cellular-dependent cytotoxicity of HER2/neu-expressing GBM cell lines. The results decreased from A172 to U251 and were negative for U87MG, in accordance with the decreasing density of HER2/neu receptors

    Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma

    Get PDF
    BACKGROUND: We previously identified brain type fatty acid-binding protein (FABP7) as a prognostic marker for patients with glioblastoma (GBM). Increased expression of FABP7 is associated with reduced survival. To investigate possible molecular mechanisms underlying this association, we compared the expression and subcellular localization of FABP7 in non-tumor brain tissues with different types of glioma, and examined the expression of FABP7 and epidermal growth factor receptor (EGFR) in GBM tumors. METHODS: Expression of FABP7 in non-tumor brain and glioma specimens was examined using immunohistochemistry, and its correlation to the clinical behavior of the tumors was analyzed. We also analyzed the association between FABP7 and EGFR expression in different sets of GBM specimens using published DNA microarray datasets and semi-quantitative immunohistochemistry. In vitro migration was examined using SF763 glioma cell line. RESULTS: FABP7 was present in a unique population of glia in normal human brain, and its expression was increased in a subset of reactive astrocytes. FABP7 immunoreactivity in grade I pilocytic astrocytoma was predominantly cytoplasmic, whereas nuclear FABP7 was detected in other types of infiltrative glioma. Nuclear, not cytoplasmic, FABP7 immunoreactivity was associated with EGFR overexpression in GBM (N = 61, p = 0.008). Expression of the FABP7 gene in GBM also correlated with the abundance of EGFR mRNA in our previous microarray analyses (N = 34, p = 0.016) and an independent public microarray dataset (N = 28, p = 0.03). Compared to those negative for both markers, nuclear FABP7-positive/EGFR-positive and nuclear FABP7-positive/EGFR-negative GBM tumors demonstrated shortest survival, whereas those only positive for EGFR had intermediate survival. EGFR activation increased nuclear FABP7 immunoreactivity in a glioma cell line in vitro, and inhibition of FABP7 expression suppressed EGF-induced glioma-cell migration. Our data suggested that in EGFR-positive GBM the presence of nuclear FABP7 immunoreactivity increases the risk of poor prognosis CONCLUSION: In this study, we identified a possible mechanism as the basis of the association between nuclear FABP7 and poor prognosis of GBM. FABP7 expression can be found in all grades of astrocytoma, but neoplastic cells with nuclear FABP7 were only seen in infiltrative types of tumors. Nuclear FABP7 may be induced by EGFR activation to promote migration of GBM tumor cells. Positive nuclear FABP7 and EGFR overexpression correlated with short survival in EGFR-positive GBM patients. Therefore, nuclear FABP7 immunoreactivity could be used to monitor the progression of EGFR-overexpressed GBM

    Dexamethasone inhibits the HSV-tk/ ganciclovir bystander effect in malignant glioma cells

    Get PDF
    BACKGROUND: HSV-tk/ ganciclovir (GCV) gene therapy has been extensively studied in the setting of brain tumors and largely relies on the bystander effect. Large studies have however failed to demonstrate any significant benefit of this strategy in the treatment of human brain tumors. Since dexamethasone is a frequently used symptomatic treatment for malignant gliomas, its interaction with the bystander effect and the overall efficacy of HSV-TK gene therapy ought to be assessed. METHODS: Stable clones of TK-expressing U87, C6 and LN18 cells were generated and their bystander effect on wild type cells was assessed. The effects of dexamethasone on cell proliferation and sensitivity to ganciclovir were assessed with a thymidine incorporation assay and a MTT test. Gap junction mediated intercellular communication was assessed with microinjections and FACS analysis of calcein transfer. The effect of dexamethasone treatment on the sensitivity of TK-expressing to FAS-dependent apoptosis in the presence or absence of ganciclovir was assessed with an MTT test. Western blot was used to evidence the effect of dexamethasone on the expression of Cx43, CD95, CIAP2 and Bcl(XL). RESULTS: Dexamethasone significantly reduced the bystander effect in TK-expressing C6, LN18 and U87 cells. This inhibition results from a reduction of the gap junction mediated intercellular communication of these cells (GJIC), from an inhibition of their growth and thymidine incorporation and from a modulation of the apoptotic cascade. CONCLUSION: The overall efficacy of HSV-TK gene therapy is adversely affected by dexamethasone co-treatment in vitro. Future HSV-tk/ GCV gene therapy clinical protocols for gliomas should address this interference of corticosteroid treatment

    Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas

    Get PDF
    Loss of heterozygosity (LOH) for chromosome 10 is the most frequent genetic abnormality observed in high-grade gliomas. We have used fluorescent microsatellite markers to examine a series of 83 patients, 34 with anaplastic astrocytoma (grade 3) and 49 with glioblastoma multiforme (grade 4), for LOH of chromosome 10. Genotype analysis revealed LOH for all informative chromosome 10 markers in 12 (35%) of patients with grade 3 and 29 (59%) grade 4 tumours respectively, while partial LOH was found in a further eight (24%) grade 3 and ten (20%) grade 4 tumours. Partial LOH, was confined to the long arm (10q) in six and the short arm (10p) in three cases, while alleles from both arms were lost in four cases. Five tumours (one grade 3 and four grade 4) showed heterogeneity with respect to loss at different loci. There was a correlation between any chromosome 10 loss and poorer performance status at presentation (χ2P = 0.005) and with increasing age at diagnosis (Mann–Whitney U-test P = 0.034) but not with tumour grade (χ2P = 0.051). A Cox multivariate model for survival duration identified age (proportional hazards (PH), P = 0.004), grade (PH, P = 0.012) and any loss of chromosome 10 (PH, P = 0.009) as the only independent prognostic variables. Specifically, LOH for chromosome 10 was able to identify a subgroup of patients with grade 3 tumours who had a significantly shorter survival time. We conclude that LOH for chromosome 10 is an independent, adverse prognostic variable in high-grade glioma. © 1999 Cancer Research Campaig

    Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis.</p> <p>Methods</p> <p>Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire interview was completed by each glioma patient or a designated proxy. Intake of each food item was converted to grams consumed/day. From this nutrient database, 16 antioxidants, calcium, a total antioxidant index and 3 macronutrients were available for survival analysis. Cox regression estimated mortality hazard ratios associated with each nutrient and the antioxidant index adjusting for potential confounders. Nutrient values were categorized into tertiles. Models were stratified by histology (Grades II, III, and IV) and conducted for all (including proxy) subjects and for a subset of self-reported subjects.</p> <p>Results</p> <p>Geometric mean values for 11 fat-soluble and 6 water-soluble individual antioxidants, antioxidant index and 3 macronutrients were virtually the same when comparing all cases (n = 748) to self-reported cases only (n = 450). For patients diagnosed with Grade II and Grade III histology, moderate (915.8-2118.3 mcg) intake of fat-soluble lycopene was associated with poorer survival when compared to low intake (0.0-914.8 mcg), for self-reported cases only. High intake of vitamin E and moderate/high intake of secoisolariciresinol among Grade III patients indicated greater survival for all cases. In Grade IV patients, moderate/high intake of cryptoxanthin and high intake of secoisolariciresinol were associated with poorer survival among all cases. Among Grade II patients, moderate intake of water-soluble folate was associated with greater survival for all cases; high intake of vitamin C and genistein and the highest level of the antioxidant index were associated with poorer survival for all cases.</p> <p>Conclusions</p> <p>The associations observed in our study suggest that the influence of some antioxidants on survival following a diagnosis of malignant glioma are inconsistent and vary by histology group. Further research in a large sample of glioma patients is needed to confirm/refute our results.</p

    Nonviral Approaches for Neuronal Delivery of Nucleic Acids

    Get PDF
    The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges

    Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells.</p> <p>Methods</p> <p>Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured <it>in vivo </it>with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed <it>ex vivo </it>with fluorescence imaging.</p> <p>Results</p> <p>We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells.</p> <p>Conclusion</p> <p>The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.</p

    Progress in gene therapy for neurological disorders

    Get PDF
    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy
    • …
    corecore