9,384 research outputs found

    Rapid behavioral transitions produce chaotic mixing by a planktonic microswimmer

    Full text link
    Despite their vast morphological diversity, many invertebrates have similar larval forms characterized by ciliary bands, innervated arrays of beating cilia that facilitate swimming and feeding. Hydrodynamics suggests that these bands should tightly constrain the behavioral strategies available to the larvae; however, their apparent ubiquity suggests that these bands also confer substantial adaptive advantages. Here, we use hydrodynamic techniques to investigate "blinking," an unusual behavioral phenomenon observed in many invertebrate larvae in which ciliary bands across the body rapidly change beating direction and produce transient rearrangement of the local flow field. Using a general theoretical model combined with quantitative experiments on starfish larvae, we find that the natural rhythm of larval blinking is hydrodynamically optimal for inducing strong mixing of the local fluid environment due to transient streamline crossing, thereby maximizing the larvae's overall feeding rate. Our results are consistent with previous hypotheses that filter feeding organisms may use chaotic mixing dynamics to overcome circulation constraints in viscous environments, and it suggests physical underpinnings for complex neurally-driven behaviors in early-divergent animals.Comment: 20 pages, 4 figure

    Communication Cost for Updating Linear Functions when Message Updates are Sparse: Connections to Maximally Recoverable Codes

    Full text link
    We consider a communication problem in which an update of the source message needs to be conveyed to one or more distant receivers that are interested in maintaining specific linear functions of the source message. The setting is one in which the updates are sparse in nature, and where neither the source nor the receiver(s) is aware of the exact {\em difference vector}, but only know the amount of sparsity that is present in the difference-vector. Under this setting, we are interested in devising linear encoding and decoding schemes that minimize the communication cost involved. We show that the optimal solution to this problem is closely related to the notion of maximally recoverable codes (MRCs), which were originally introduced in the context of coding for storage systems. In the context of storage, MRCs guarantee optimal erasure protection when the system is partially constrained to have local parity relations among the storage nodes. In our problem, we show that optimal solutions exist if and only if MRCs of certain kind (identified by the desired linear functions) exist. We consider point-to-point and broadcast versions of the problem, and identify connections to MRCs under both these settings. For the point-to-point setting, we show that our linear-encoder based achievable scheme is optimal even when non-linear encoding is permitted. The theory is illustrated in the context of updating erasure coded storage nodes. We present examples based on modern storage codes such as the minimum bandwidth regenerating codes.Comment: To Appear in IEEE Transactions on Information Theor

    Codes with Locality for Two Erasures

    Full text link
    In this paper, we study codes with locality that can recover from two erasures via a sequence of two local, parity-check computations. By a local parity-check computation, we mean recovery via a single parity-check equation associated to small Hamming weight. Earlier approaches considered recovery in parallel; the sequential approach allows us to potentially construct codes with improved minimum distance. These codes, which we refer to as locally 2-reconstructible codes, are a natural generalization along one direction, of codes with all-symbol locality introduced by Gopalan \textit{et al}, in which recovery from a single erasure is considered. By studying the Generalized Hamming Weights of the dual code, we derive upper bounds on the minimum distance of locally 2-reconstructible codes and provide constructions for a family of codes based on Tur\'an graphs, that are optimal with respect to this bound. The minimum distance bound derived here is universal in the sense that no code which permits all-symbol local recovery from 22 erasures can have larger minimum distance regardless of approach adopted. Our approach also leads to a new bound on the minimum distance of codes with all-symbol locality for the single-erasure case.Comment: 14 pages, 3 figures, Updated for improved readabilit

    Fast Lean Erasure-Coded Atomic Memory Object

    Get PDF
    In this work, we propose FLECKS, an algorithm which implements atomic memory objects in a multi-writer multi-reader (MWMR) setting in asynchronous networks and server failures. FLECKS substantially reduces storage and communication costs over its replication-based counterparts by employing erasure-codes. FLECKS outperforms the previously proposed algorithms in terms of the metrics that to deliver good performance such as storage cost per object, communication cost a high fault-tolerance of clients and servers, guaranteed liveness of operation, and a given number of communication rounds per operation, etc. We provide proofs for liveness and atomicity properties of FLECKS and derive worst-case latency bounds for the operations. We implemented and deployed FLECKS in cloud-based clusters and demonstrate that FLECKS has substantially lower storage and bandwidth costs, and significantly lower latency of operations than the replication-based mechanisms

    Updating Content in Cache-Aided Coded Multicast

    Full text link
    Motivated by applications to delivery of dynamically updated, but correlated data in settings such as content distribution networks, and distributed file sharing systems, we study a single source multiple destination network coded multicast problem in a cache-aided network. We focus on models where the caches are primarily located near the destinations, and where the source has no cache. The source observes a sequence of correlated frames, and is expected to do frame-by-frame encoding with no access to prior frames. We present a novel scheme that shows how the caches can be advantageously used to decrease the overall cost of multicast, even though the source encodes without access to past data. Our cache design and update scheme works with any choice of network code designed for a corresponding cache-less network, is largely decentralized, and works for an arbitrary network. We study a convex relation of the optimization problem that results form the overall cost function. The results of the optimization problem determines the rate allocation and caching strategies. Numerous simulation results are presented to substantiate the theory developed.Comment: To Appear in IEEE Journal on Selected Areas in Communications: Special Issue on Caching for Communication Systems and Network

    A review of innovative bond instruments for sustainable development in Asia

    Get PDF
    Purpose Advancing the economies in Asia toward meeting sustainable development goals (SDGs) needs an unprecedented investment in people, processes and the planet. The participation of the private sector is necessary to bridge the financing gap to attain this objective. Engaging the private sector can contribute significantly to attaining the 2030 agenda for SD. However, the financial markets in Asian economies are yet to realize this potential. In this context, this paper aims to discuss the state of finance for SD in Asia and identifies innovative financial instruments for attracting private investments for SDs in these economies. Design/methodology/approach This study relies on published articles, reports and policy documents on financing mechanisms for SD. The literature review covered journal data sources, reports from global institutions such as the UN, World Bank, International Monetary Fund and think-tanks operating in the field of climate change policies. Though the topic was specific to financial market instruments, a broader search was conducted to understand the different sources of sustainable finance available, particularly in Asia. Findings The investments that are required for meeting the SDGs remain underfunded. Though interest in sustainability is growing in the Asian economies, the financial markets are yet to transition to tap the growing interest in sustainable investing among global investors. This paper concludes that to raise capital from private investors the Asian economies should ensure information availability, reduce distortions and unblock regulatory obstacles. It would also need designing policies and introducing blended financing instruments combining private and public funds. Research limitations/implications Though the study has grouped Asian economies, the financing strategy for SDGs should be developed at the country-level considering the domestic financial markets, local developmental stage, fiscal capacity and nationally determined contributions. Further research can focus on developing country-specific strategies for using innovative financial instruments. Originality/value Mobilizing funds for implementing the 2030 Agenda for SD is a major challenge for Asian economies. The paper is addressed to national policymakers in Asian economies for developing strategies to raise capital for SD through private participation. It provides opportunities for revisiting national approaches to sustainable finance in these economies
    • …
    corecore