33 research outputs found

    Changes in the gastric enteric nervous system and muscle: A case report on two patients with diabetic gastroparesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular components. The aim of this study was to use modern analytical methods to determine morphological and molecular changes in the gastric wall in patients with diabetic gastroparesis.</p> <p>Methods</p> <p>Full thickness gastric biopsies were obtained laparoscopically from two gastroparetic patients undergoing surgical intervention and from disease-free areas of control subjects undergoing other forms of gastric surgery. Samples were processed for histological and immunohistochemical examination.</p> <p>Results</p> <p>Although both patients had severe refractory symptoms with malnutrition, requiring the placement of a gastric stimulator, one of them had no significant abnormalities as compared with controls. This patient had an abrupt onset of symptoms with a relatively short duration of diabetes that was well controlled. By contrast, the other patient had long standing brittle and poorly controlled diabetes with numerous episodes of diabetic ketoacidosis and frequent hypoglycemic episodes. Histological examination in this patient revealed increased fibrosis in the muscle layers as well as significantly fewer nerve fibers and myenteric neurons as assessed by PGP9.5 staining. Further, significant reduction was seen in staining for neuronal nitric oxide synthase, heme oxygenase-2, tyrosine hydroxylase as well as for c-KIT.</p> <p>Conclusion</p> <p>We conclude that poor metabolic control is associated with significant pathological changes in the gastric wall that affect all major components including muscle, neurons and ICC. Severe symptoms can occur in the absence of these changes, however and may reflect vagal, central or hormonal influences. Gastroparesis is therefore likely to be a heterogeneous disorder. Careful molecular and pathological analysis may allow more precise phenotypic differentiation and shed insight into the underlying mechanisms as well as identify novel therapeutic targets.</p

    Diabetic gastroparesis: Therapeutic options

    Get PDF
    Gastroparesis is a condition characterized by delayed gastric emptying and the most common known underlying cause is diabetes mellitus. Symptoms include nausea, vomiting, abdominal fullness, and early satiety, which impact to varying degrees on the patient’s quality of life. Symptoms and deficits do not necessarily relate to each other, hence despite significant abnormalities in gastric emptying, some individuals have only minimal symptoms and, conversely, severe symptoms do not always relate to measures of gastric emptying. Prokinetic agents such as metoclopramide, domperidone, and erythromycin enhance gastric motility and have remained the mainstay of treatment for several decades, despite unwanted side effects and numerous drug interactions. Mechanical therapies such as endoscopic pyloric botulinum toxin injection, gastric electrical stimulation, and gastrostomy or jejunostomy are used in intractable diabetic gastroparesis (DG), refractory to prokinetic therapies. Mitemcinal and TZP-101 are novel investigational motilin receptor and ghrelin agonists, respectively, and show promise in the treatment of DG. The aim of this review is to provide an update on prokinetic and mechanical therapies in the treatment of DG

    Esophageal ultrasonography: A new view on esophageal motility

    No full text
    Esophageal manometry has long been the gold standard for assessment of esophageal motility. Recently, high-frequency intraluminal ultrasonography (HFIUS) has been introduced to measure esophageal contractility and the thickness of esophageal muscle. Greater esophageal muscle thickness has been reported in patients with achalasia, diffuse spasm, and hypertensive peristalsis. In this issue of the Journal, Mittal and colleagues report additional observations in patients with esophageal symptoms referred for esophageal manometry. Their findings confirm earlier observations in patients with spastic motor disorders and report new findings of greater muscle thickness in patients with nonspecific motor disorders as well as normal manometry. Greater muscle thickness was associated with a greater prevalence of dysphagia suggesting the possibility that symptoms may be related, at least in part, to alterations in the biomechanics of the esophagus. The place of HFIUS in the assessment of esophageal function remains to be determined, but it offers the possibility of greater insights into esophageal physiology as well as clinical esophageal motor disorders.Richard H Hollowa
    corecore