943 research outputs found

    Long delay times in reaction rates increase intrinsic fluctuations

    Full text link
    In spatially distributed cellular systems, it is often convenient to represent complicated auxiliary pathways and spatial transport by time-delayed reaction rates. Furthermore, many of the reactants appear in low numbers necessitating a probabilistic description. The coupling of delayed rates with stochastic dynamics leads to a probability conservation equation characterizing a non-Markovian process. A systematic approximation is derived that incorporates the effect of delayed rates on the characterization of molecular noise, valid in the limit of long delay time. By way of a simple example, we show that delayed reaction dynamics can only increase intrinsic fluctuations about the steady-state. The method is general enough to accommodate nonlinear transition rates, allowing characterization of fluctuations around a delay-induced limit cycle.Comment: 8 pages, 3 figures, to be published in Physical Review

    Fluid–structure interaction design of insect–like micro flapping wing

    Get PDF
    In this study, a FSI design of an insect–like micro flapping wing is proposed. Similar to actual insects, the proposed design actively uses the FSI to create the passive wing motions. Each design solution has a 2.5–D structure for the MEMS technology. The 3–D unsteady monolithic FSI equation system is solved to find the satisfactory design solutions using a projection method in a parallel computation environment. An area of satisfactory design solutions in a design parameter space or Design Window (DW) is presented. Each design solution in the present DW can generate the thrust sufficient to support the weight of the model insect. Therefore, the insect–like MEMS–based MAVs are possible

    On-chip quantum interference between silicon photon-pair sources

    Get PDF
    Large-scale integrated quantum photonic technologies1, 2 will require on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have been demonstrated already1, 2, 3, 4, 5, 6, 7, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip8, 9. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device that combines two four-wave mixing sources in an interferometer with a reconfigurable phase shifter. We configured the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate) path-entangled or path-unentangled photon pairs. We observed up to 100.0 ± 0.4% visibility quantum interference on-chip, and up to 95 ± 4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits and is a first step towards fully integrated quantum technologies

    Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin

    Get PDF
    OBJECTIVE The aim of this study was to investigate whether apolipoprotein B100 of LDL suffers increased damage by glycation, oxidation, and nitration in patients with type 2 diabetes, including patients receiving metformin therapy. RESEARCH DESIGN AND METHODS For this study, 32 type 2 diabetic patients and 21 healthy control subjects were recruited; 13 diabetic patients were receiving metformin therapy (median dose: 1.50 g/day). LDL was isolated from venous plasma by ultracentrifugation, delipidated, digested, and analyzed for protein glycation, oxidation, and nitration adducts by stable isotopic dilution analysis tandem mass spectrometry. RESULTS Advanced glycation end product (AGE) content of apolipoprotein B100 of LDL from type 2 diabetic patients was higher than from healthy subjects: arginine-derived AGE, 15.8 vs. 5.3 mol% (P < 0.001); and lysine-derived AGE, 2.5 vs. 1.5 mol% (P < 0.05). Oxidative damage, mainly methionine sulfoxide residues, was also increased: 2.5 vs. 1.1 molar equivalents (P < 0.001). 3-Nitrotyrosine content was decreased: 0.04 vs. 0.12 mol% (P < 0.05). In diabetic patients receiving metformin therapy, arginine-derived AGE and methionine sulfoxide were lower than in patients not receiving metformin: 19.3 vs. 8.9 mol% (P < 0.01) and 2.9 vs. 1.9 mol% (P < 0.05), respectively; 3-nitrotyrosine content was higher: 0.10 vs. 0.03 mol% (P < 0.05). Fructosyl-lysine residue content correlated positively with fasting plasma glucose. Arginine-derived AGE residue contents were intercorrelated and also correlated positively with methionine sulfoxide. CONCLUSIONS Patients with type 2 diabetes had increased arginine-derived AGEs and oxidative damage in apolipoprotein B100 of LDL. This was lower in patients receiving metformin therapy, which may contribute to decreased oxidative damage, atherogenicity, and cardiovascular disease

    Criticality and oscillatory behavior in non-Markovian Contact Process

    Full text link
    A Non-Markovian generalization of one-dimensional Contact Process (CP) is being introduced in which every particle has an age and will be annihilated at its maximum age τ\tau. There is an absorbing state phase transition which is controlled by this parameter. The model can demonstrate oscillatory behavior in its approach to the stationary state. These oscillations are also present in the mean-field approximation which is a first-order differential equation with time-delay. Studying dynamical critical exponents suggests that the model belongs to the DP universlity class.Comment: 4 pages, 5 figures, to be published in Phys. Rev.

    Finite Size Effects in Separable Recurrent Neural Networks

    Full text link
    We perform a systematic analytical study of finite size effects in separable recurrent neural network models with sequential dynamics, away from saturation. We find two types of finite size effects: thermal fluctuations, and disorder-induced `frozen' corrections to the mean-field laws. The finite size effects are described by equations that correspond to a time-dependent Ornstein-Uhlenbeck process. We show how the theory can be used to understand and quantify various finite size phenomena in recurrent neural networks, with and without detailed balance.Comment: 24 pages LaTex, with 4 postscript figures include

    Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Owen, K., Saeki, K., Warren, J. D., Bocconcelli, A., Wiley, D. N., Ohira, S., Bombosch, A., Toda, K., & Zitterbart, D. P. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass. Communications Biology, 4(1), (2021): 149, https://doi.org/10.1038/s42003-021-01668-3.Finding prey is essential to survival, with marine predators hypothesised to track chemicals such as dimethyl sulfide (DMS) while foraging. Many predators are attracted to artificially released DMS, and laboratory experiments have shown that zooplankton grazing on phytoplankton accelerates DMS release. However, whether natural DMS concentrations are useful for predators and correlated to areas of high prey biomass remains a fundamental knowledge gap. Here, we used concurrent hydroacoustic surveys and in situ DMS measurements to present evidence that zooplankton biomass is spatially correlated to natural DMS concentration in air and seawater. Using agent simulations, we also show that following gradients of DMS would lead zooplankton predators to areas of higher prey biomass than swimming randomly. Further understanding of the conditions and scales over which these gradients occur, and how they are used by predators, is essential to predicting the impact of future changes in the ocean on predator foraging success.Open Access funding enabled and organized by Projekt DEAL. This study was funded by the Herrington Fitch Family Foundation, by the Woods Hole Oceanographic Institution Joint Initiative Awards Fund from the Andrew W. Mellon Foundation and The President’s Investment Fund, and by KAKENHI, Grants-in-Aid for Basic Research (B) (Grant no. 16H04168) and Bilateral Programs Joint Research Projects (open partnership), both from the Japan Society for the Promotion of Science. The authors thank Mrs. Norio Hayashi, Takanori Nagahata, and Ms. Mihoko Asano (Mitsubishi Chemical Analytech Co.) for their support with the SGV-CL device. The research was conducted under Scientific Research Permit number 18059, issued by the National Oceanic and Atmospheric Administration under the Marine Mammal Protection Act
    • 

    corecore