3,326 research outputs found

    Multipath mitigation technique under strong multipath environment using multiple antennas

    Get PDF
    2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe

    Charge diffusion constant in hot and dense hadronic matter - A Hadro-molecular-dynamic calculation

    Get PDF
    We evaluate charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 < E < 100 GeV/A and satisfies detailed balance at low temperatures (T < 200 MeV). For the hot and dense hadronic matter of the temperature range, 100 < T < 200 MeV and baryon number density, 0.16 < nB < 0.32 fm^-3, charge diffusion constant D gradually increases from 0.5 fm c to 2 fm c with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions.Comment: 13 pages, 4 figure

    Macroscopic quantum tunneling and phase diffusion in a La2−x_{2-x}Srx_xCuO4_4 intrinsic Josephson junction stack

    Full text link
    We performed measurements of switching current distribution in a submicron La2−x_{2-x}Srx_xCuO4_4 (LSCO) intrinsic Josephson junction (IJJ) stack in a wide temperature range. The escape rate saturates below approximately 2\,K, indicating that the escape event is dominated by a macroscopic quantum tunneling (MQT) process with a crossover temperature T∗≈2 T^{*}\approx2\,K. We applied the theory of MQT for IJJ stacks, taking into account dissipation and the phase re-trapping effect in the LSCO IJJ stack. The theory is in good agreement with the experiment both in the MQT and in the thermal activation regimes.Comment: 9 pages, 7 figure

    Coherent Diffusion of Polaritons in Atomic Media

    Full text link
    Coherent diffusion pertains to the motion of atomic dipoles experiencing frequent collisions in vapor while maintaining their coherence. Recent theoretical and experimental studies on the effect of coherent diffusion on key Raman processes, namely Raman spectroscopy, slow polariton propagation, and stored light, are reviewed in this Colloquium.Comment: Submitted to Review of Modern Physic

    Multipole Ordering and Fluctuations in f-Electron Systems

    Full text link
    We investigate effects of multipole moments in f-electron systems both from phenomenological and microscopic viewpoints. First, we discuss significant effects of octupole moment on the magnetic susceptibility in a paramagnetic phase. It is found that even within mean-field approximation, the magnetic susceptibility deviates from the Curie-Weiss law due to interactions between dipole and octupole moments. Next, we proceed to a microscopic theory for multipole ordering on the basis of a j-j coupling scheme. After brief explanation of a method to derive multipole interactions from the ff-electron model, we discuss several multipole ordered phases depending on lattice structure. Finally, we show our new development of the microscopic approach to the evaluation of multipole response functions. We apply fluctuation exchange approximation to the f-electron model, and evaluate multipole response functions.Comment: 7 pages, 4 figures, Proceedings of ASR-WYP-200

    A Calculation of Baryon Diffusion Constant in Hot and Dense Hadronic Matter Based on an Event Generator URASiMA

    Get PDF
    We evaluate thermodynamical quantities and transport coefficients of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter.Comment: 15 pages, 5 figures, LaTeX2

    Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

    Full text link
    We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion &#949;yz+&#949;zx+&#949;xy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron

    Thermoelectric effects in a strongly correlated model for Nax_xCoO2_2

    Get PDF
    Thermal response functions of strongly correlated electron systems are of appreciable interest to the larger scientific community both theoretically and technologically. Here we focus on the infinitely correlated t-J model on a geometrically frustrated two-dimensional triangular lattice. Using exact diagonalization on a finite sized system we calculate the dynamical thermal response functions in order to determine the thermopower, Lorenz number, and dimensionless figure of merit. The dynamical thermal response functions is compared to the infinite frequency limit and shown to be very weak functions of frequency, hence, establishing the validity of the high frequency formalism recently proposed by Shastry for the thermopower, Lorenz number, and the dimensionless figure of merit. Further, the thermopower is demonstrated to have a low to mid temperature enhancement when the sign of the hopping parameter tt is switched from positive to negative for the geometrically frustrated lattice considered.Comment: 16 pages, 10 figures, color version available at http://physics.ucsc.edu/~peterson/mrpeterson-condmat-NCO.pdf. V.2 has fixed minor typos in Eq. 11, 19, 25, and 26. V.3 is a color versio

    Invalidity of Classes of Approximated Hall Effect Calculations

    Full text link
    In this comment, I point out a number of approximated derivations for the effective equation of motion, now been applied to d-wave superconductors by Kopnin and Volovik are invalid. The major error in those approximated derivations is the inappropriate use of the relaxation time approximation in force-force correlation functions, or in force balance equations, or in similar variations. This approximation is wrong and unnecessary.Comment: final version, minor changes, to appear in Phys. Rev. Let

    Nontrivial, Asymptotically Non-free Gauge Theories and Dynamical Unification of Couplings

    Full text link
    An evidence for nontriviality of asymptotically non-free (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of dynamical unification of couplings (DUC) The second-order reduction of couplings in the ANF SU(3)SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC
    • 

    corecore