1,980 research outputs found

    Exchange Biasing of the Ferromagnetic Semiconductor Ga1-xMnxAs

    Full text link
    We demonstrate the exchange coupling of a ferromagnetic semiconductor (Ga1-xMnxAs) with an overgrown antiferromagnet (MnO). Unlike most conventional exchange biased systems, the blocking temperature of the antiferromagnet (T_B = 48 +- 2 K) and the Curie temperature of the ferromagnet (T_C = 55.1 +- 0.2 K) are comparable. The resulting exchange bias manifests itself as a clear shift in the magnetization hysteresis loop when the bilayer is cooled in the presence of an applied magnetic field and an enhancement of the coercive field.Comment: pdf file only; submitted to Applied Physics Letter

    Exchange Biasing of the Ferromagnetic Semiconductor (Ga,Mn)As by MnO

    Full text link
    We provide an overview of progress on the exchange biasing of a ferromagnetic semiconductor (Ga1-xMnxAs) by proximity to an antiferromagnetic oxide layer (MnO). We present a detailed characterization study of the antiferromagnetic layer using Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, transmission electron microscopy, and x-ray reflection. In addition, we describe the variation of the exchange and coercive fields with temperature and cooling field for multiple samples.Comment: To appear in J. Appl. Phys. (invited paper in Proceedings of the 49th Annual Conference on Magnetism & Magnetic Materials); pdf file onl

    Feynman diagrams versus Fermi-gas Feynman emulator

    Get PDF
    Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics

    Exact Wavefunctions in a Noncommutative Field Theory

    Get PDF
    We consider the nonrelativistic field theory with a quartic interaction on a noncommutative plane. We compute the four point scattering amplitude within perturbative analysis to all orders and identify the beta function and the running of the coupling constant. Since the theory admits an equivalent description via the N particle Schrodinger equation, we regain the scattering amplitude by finding an exact scattering wavefunction of the two body equation. The wave function for the bound state is also identified. These wave functions unusually have two center positions in the relative coordinates. The separation of the centers is in the transverse direction of the total momentum and grows linearly with the noncommutativity scale and the total momentum, exhibiting the stringy nature of the noncommutative field theory.Comment: Typos corrected. 7 page

    Self-consistent solution of Kohn-Sham equations for infinitely extended systems with inhomogeneous electron gas

    Full text link
    The density functional approach in the Kohn-Sham approximation is widely used to study properties of many-electron systems. Due to the nonlinearity of the Kohn-Sham equations, the general self-consistence searching method involves iterations with alternate solving of the Poisson and Schr\"{o}dinger equations. One of problems of such an approach is that the charge distribution renewed by means of the Schr\"{o}dinger equation solution does not conform to boundary conditions of Poisson equation for Coulomb potential. The resulting instability or even divergence of iterations manifests itself most appreciably in the case of infinitely extended systems. The published attempts to deal with this problem are reduced in fact to abandoning the original iterative method and replacing it with some approximate calculation scheme, which is usually semi-empirical and does not permit to evaluate the extent of deviation from the exact solution. In this work, we realize the iterative scheme of solving the Kohn-Sham equations for extended systems with inhomogeneous electron gas, which is based on eliminating the long-range character of Coulomb interaction as the cause of tight coupling between charge distribution and boundary conditions. The suggested algorithm is employed to calculate energy spectrum, self-consistent potential, and electrostatic capacitance of the semi-infinite degenerate electron gas bounded by infinitely high barrier, as well as the work function and surface energy of simple metals in the jellium model. The difference between self-consistent Hartree solutions and those taking into account the exchange-correlation interaction is analyzed. The case study of the metal-semiconductor tunnel contact shows this method being applied to an infinitely extended system where the steady-state current can flow.Comment: 38 pages, 9 figures, to be published in ZhETF (J. Exp. Theor. Phys.

    Numerical study of the EeE\otimes e Jahn-Teller polaron and bipolaron

    Full text link
    The properties of the polaron and bipolaron are explored in the 1D Jahn-Teller model with dynamical quantum phonons. The ground-state properties of the polaron and bipolaron are computed using a recently developed variational method. Dynamical properties of the ground state of a polaron are investigated by calculating the optical conductivity σ(ω)\sigma(\omega). Our numerical results suggest that the Jahn-Teller and Holstein polarons are similar. However, in the strong-coupling regime qualitative differences in σ(ω)\sigma(\omega) between the two models are found and discussed. The influence of the electron-phonon coupling and the electrostatic repulsion on the bipolaron binding energy, bipolaron masses, and correlation functions is investigated.Comment: 9 pages including 11 figures. To appear in PR

    The regularized visible fold revisited

    Full text link
    The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϵ0\epsilon\rightarrow 0. Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit ϵ0\epsilon\rightarrow 0, grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law

    Noncommutative Field Theories and Smooth Commutative Limits

    Get PDF
    We consider two model field theories on a noncommutative plane that have smooth commutative limits. One is the single-component fermion theory with quartic interaction that vanishes identically in the commutative limit. The other is a scalar-fermion theory, which extends the scalar field theory with quartic interaction by adding a fermion. We compute the bound state energies and the two particle scattering amplitudes exactly.Comment: 8 pages, 2 figure
    corecore