10 research outputs found

    Microfluidic Chip for Molecular Amplification of Influenza A RNA in Human Respiratory Specimens

    Get PDF
    A rapid, low cost, accurate point-of-care (POC) device to detect influenza virus is needed for effective treatment and control of both seasonal and pandemic strains. We developed a single-use microfluidic chip that integrates solid phase extraction (SPE) and molecular amplification via a reverse transcription polymerase chain reaction (RT-PCR) to amplify influenza virus type A RNA. We demonstrated the ability of the chip to amplify influenza A RNA in human nasopharyngeal aspirate (NPA) and nasopharyngeal swab (NPS) specimens collected at two clinical sites from 2008–2010. The microfluidic test was dramatically more sensitive than two currently used rapid immunoassays and had high specificity that was essentially equivalent to the rapid assays and direct fluorescent antigen (DFA) testing. We report 96% (CI 89%,99%) sensitivity and 100% (CI 95%,100%) specificity compared to conventional (bench top) RT-PCR based on the testing of n = 146 specimens (positive predictive value = 100%(CI 94%,100%) and negative predictive value = 96%(CI 88%,98%)). These results compare well with DFA performed on samples taken during the same time period (98% (CI 91%,100%) sensitivity and 96%(CI 86%,99%) specificity compared to our gold standard testing). Rapid immunoassay tests on samples taken during the enrollment period were less reliable (49%(CI 38%,61%) sensitivity and 98%(CI 98%,100%) specificity). The microfluidic test extracted and amplified influenza A RNA directly from clinical specimens with viral loads down to 103 copies/ml in 3 h or less. The new test represents a major improvement over viral culture in terms of turn around time, over rapid immunoassay tests in terms of sensitivity, and over bench top RT-PCR and DFA in terms of ease of use and portability

    Cell-type-specific transcriptional profiles of the dimorphic pathogen penicillium marneffei reflect distinct reproductive, morphological, and environmental demands

    Get PDF
    Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify "phase or cell-state-specific" gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase-encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity. © 2013 Pasricha et al

    Nucleic acid-based diagnostics for infectious diseases in public health affairs

    No full text

    Two years after pandemic influenza A/2009/H1N1: What have we learned?

    No full text
    The world had been anticipating another influenza pandemic since the last one in 1968. The pandemic influenza A H1N1 2009 virus (A/2009/H1N1) finally arrived, causing the first pandemic influenza of the new millennium, which has affected over 214 countries and caused over 18,449 deaths. Because of the persistent threat from the A/H5N1 virus since 1997 and the outbreak of the severe acute respiratory syndrome (SARS) coronavirus in 2003, medical and scientific communities have been more prepared in mindset and infrastructure. This preparedness has allowed for rapid and effective research on the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the disease, with impacts on its control. A PubMed search using the keywords "pandemic influenza virus H1N1 2009" yielded over 2,500 publications, which markedly exceeded the number published on previous pandemics. Only representative works with relevance to clinical microbiology and infectious diseases are reviewed in this article. A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures. These findings could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics. © 2012, American Society for Microbiology. All Rights Reserved.link_to_subscribed_fulltex

    Two Years after Pandemic Influenza A/2009/H1N1: What Have We Learned?

    No full text
    corecore