75 research outputs found

    Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates

    Get PDF
    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses

    Air quality and error quantity: pollution and performance in a high-skilled, quality-focused occupation

    Get PDF
    We provide the first evidence that short-term exposure to air pollution affects the work performance of a group of highly-skilled, quality-focused employees. We repeatedly observe the decision-making of individual professional baseball umpires, quasi-randomly assigned to varying air quality across time and space. Unique characteristics of this setting combined with high-frequency data disentangle effects of multiple pollutants and identify previously under-explored acute effects. We find a 1 ppm increase in 3-hour CO causes an 11.5% increase in the propensity of umpires to make incorrect calls and a 10 mg/m3 increase in 12-hour PM2.5 causes a 2.6% increase. We control carefully for a variety of potential confounders and results are supported by robustness and falsification checks

    Feasibility of nonhyperbolic moveout inversion in transversely isotropic media

    No full text

    Assault on the unknown

    No full text
    • …
    corecore