380 research outputs found

    Schwarzschild Black Hole in Noncommutative Spaces

    Full text link
    We study the effects of noncommutative spaces on the horizon, the area spectrum and Hawking temperature of a Schwarzschild black hole. The results show deviations from the usual horizon, area spectrum and the Hawking temperature. The deviations depend on the parameter of space-space noncommutativity.Comment: 4 pages, accepted for publication in Gen.Rel.Gra

    Physical properties of seven binary and higher-order multiple OB systems

    Full text link
    Analyses of multi-epoch, high-resolution (~ 50000) optical spectra of seven early-type systems provided various important new insights with respect to their multiplicity. First determinations of orbital periods were made for HD 92206C (2.022 d), HD 112244 (27.665 d), HD 164438 (10.25 d), HD 123056A (~ 1314 d) and HD 123056B (< 2 d); the orbital period of HD 318015 could be improved (23.445975 d). Concerning multiplicity, a third component was discovered for HD 92206C by means of He I line profiles. For HD 93146A, which was hitherto assumed to be SB1, lines of a secondary component could be discerned. HD 123056 turns out to be a multiple system consisting of a high-mass component A (~ O8.5) displaying a broad He II 5411 A feature with variable radial velocity, and of an inner pair B (~ B0) with double He I lines. The binary HD 164816 was revisited and some of its system parameters were improved. In particular, we determined its systemic velocity to be -7 km/s, which coincides with the radial velocity of the cluster NGC 6530. This fact, together with its distance, suggests the cluster membership of HD 164816. The OB system HD 318015 (V1082 Sco) belongs to the rare class of eclipsing binaries with a supergiant primary (B0.5/0.7). Our combined orbital and light-curve analysis suggests that the secondary resembles an O9.5III star. Our results for a limited sample corroborate the findings that many O stars are actually massive multiple systems.Comment: 16 pages, 16 figures, to appear in Astronomy and Astrophysic

    Comparison of yolk fatty acid content, blood and egg cholesterol of hens fed diets containing palm olein oil and kilka fish oil

    Get PDF
    The purpose of this study was to compare the effects of dietary palm olein oil (POO) and Kilka fish oil (KFO) on yolk fatty acid content, ratio of fatty acids (FAs), antibody titre, and blood and yolk cholesterol of laying hens. One hundred White Hy-Line 26-wk-old (W-36) hens were allotted to 6 dietary treatments containing 0, 1.5, 3 and 4.5% POO or 2 and 4% KFO. The FAs and cholesterol content of yolk were measured at the end of three consecutive days of each period. Results reveal that the oleic acid increased and palmitic acid decreased (P&lt;0.05) when hens were fed diets containing POO. The KFO diets reduced the blood cholesterol, yolk linoleic acid and yolk ω-6 FA (P&lt;0.05), whereas the blood cholesterol increased by the supplementation of POO to dietary treatments. The yolk long chain polyunsaturated ω-3 FAs [Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] increased as KFO was increased in diets (P&lt;0.001). The diets supplementation of KFO and POO thus, showed a decrease and an increase in the ratio of ω-6/ ω-3 FAs (P&lt;0.05), respectively. It is concluded that supplementation of KFO to the dietary treatment may improve deposition of ω-3 FAs; however, the POO supplementation may improve deposition of ω-9 FAs without alteration of yolk cholesterol.Key words: Palm olein oil (POO), Kilka fish oil (KFO), hens, egg omega-9 and omega-3 fatty acid

    Rheology of Active-Particle Suspensions

    Full text link
    We study the interplay of activity, order and flow through a set of coarse-grained equations governing the hydrodynamic velocity, concentration and stress fields in a suspension of active, energy-dissipating particles. We make several predictions for the rheology of such systems, which can be tested on bacterial suspensions, cell extracts with motors and filaments, or artificial machines in a fluid. The phenomena of cytoplasmic streaming, elastotaxis and active mechanosensing find natural explanations within our model.Comment: 3 eps figures, submitted to Phys Rev Let

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    Liquid Blood Phantoms to Validate NIRS Oximeters: Yeast Versus Nitrogen for Deoxygenation

    Full text link
    Liquid blood phantoms are a tool to calibrate, test and compare near-infrared spectroscopy (NIRS) oximeters. They comprise a mixture of saline, blood and Intralipid, which is subsequently oxygenated and deoxygenated to assess the entire range of tissue oxygen saturation (StO) from 0% to 100%. The aim was to investigate two different deoxygenation methods: yeast versus nitrogen (N) bubbling. The phantom was oxygenated with pure O in both experiments, but deoxygenated by bubbling N in the first and by addition of yeast and glucose in the second experiment. A frequency domain NIRS instrument (OxiplexTS) was used as reference and to monitor changes in the reduced scattering coefficient (ÎĽ') of the phantom. Both deoxygenation methods yielded comparable StO values. The deoxygenation was slower by a factor 2.8 and ÎĽ' decreased faster when bubbling N. The constant bubbling of N mechanically stresses the Intralipid emulsion and causes a decrease in ÎĽ', probably due to aggregation of lipid droplets. Deoxygenation by N requires a more complex, air tight phantom. The gas flow cools the liquid and temperature needs to be monitored more closely. Consequently, we recommend using yeast for phantom deoxygenation

    Numerical approximation of the shallow water equations with coriolis source term

    Get PDF
    We investigate in this work a class of numerical schemes dedicated to the non-linear Shallow Water equations with topography and Coriolis force. The proposed algorithms rely on Finite Volume approximations formulated on collocated and staggered meshes, involving appropriate diffusion terms in the numerical fluxes, expressed as discrete versions of the linear geostrophic balance. It follows that, contrary to standard Finite-Volume approaches, the linear versions of the proposed schemes provide a relevant approximation of the geostrophic equilibrium. We also show that the resulting methods ensure semi-discrete energy estimates. Numerical experiments exhibit the efficiency of the approach in the presence of Coriolis force close to the geostrophic balance, especially at low Froude number regimes

    Limits on the Time Evolution of Space Dimensions from Newton's Constant

    Full text link
    Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not been included the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10^{-14}yr^{-1}. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present-day variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was at the Planck scale to be less than or equal to 3.09. If the dimension of space when the Universe was at the Planck scale is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.Comment: 22 pages, accepted for publication in Int.J.Mod.Phys.

    Diffusion and spatial correlations in suspensions of swimming particles

    Full text link
    Populations of swimming microorganisms produce fluid motions that lead to dramatically enhanced diffusion of tracer particles. Using simulations of suspensions of swimming particles in a periodic domain, we capture this effect and show that it depends qualitatively on the mode of swimming: swimmers ``pushed'' from behind by their flagella show greater enhancement than swimmers that are ``pulled'' from the front. The difference is manifested by an increase, that only occurs for pushers, of the diffusivity of passive tracers and the velocity correlation length with the size of the periodic domain. A physical argument supported by a mean field theory sheds light on the origin of these effects.Comment: 10 pages, 3 figures, to be published in Phys. Rev. Let
    • …
    corecore