46 research outputs found

    Deletion of claudin-10 rescues claudin-16-deficient mice from hypomagnesemia and hypercalciuria

    Get PDF
    The tight junction proteins claudin-10 and -16 are crucial for the paracellular reabsorption of cations along the thick ascending limb of Henle's loop in the kidney. In patients, mutations in CLDN16 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis, while mutations in CLDN10 impair kidney function. Mice lacking claudin-16 display magnesium and calcium wasting, whereas absence of claudin-10 results in hypermagnesemia and interstitial nephrocalcinosis. In order to study the functional interdependence of claudin-10 and -16 we generated double-deficient mice. These mice had normal serum magnesium and urinary excretion of magnesium and calcium and showed polyuria and sodium retention at the expense of increased renal potassium excretion, but no nephrocalcinosis. Isolated thick ascending limb tubules of double mutants displayed a complete loss of paracellular cation selectivity and functionality. Mice lacking both claudin-10 and -16 in the thick ascending limb recruited downstream compensatory mechanisms and showed hypertrophic distal convoluted tubules with changes in gene expression and phosphorylation of ion transporters in this segment, presumably triggered by the mild decrease in serum potassium. Thus, severe individual phenotypes in claudin-10 and claudin-16 knockout mice are corrected by the additional deletion of the other claudin

    Vasopressin lowers renal epoxyeicosatrienoic acid levels by activating soluble epoxide hydrolase

    Get PDF
    Activation of the thick ascending limb (TAL) Na+-K+-2Cl--cotransporter (NKCC2) by the antidiuretic hormone arginine-vasopressin (AVP) is an essential mechanism of renal urine concentration and contributes to extracellular fluid and electrolyte homeostasis. AVP effects in the kidney are modulated by locally and/or by systemically produced epoxyeicosatrienoic acid derivates (EET). The relation between AVP and EET metabolism has not been determined. Here we show that chronic treatment of AVP-deficient Brattleboro rats with the AVP V2 receptor analog desmopressin (dDAVP; 5ng/h, 3d) significantly lowered renal EET levels (-56 +/- 3% for 5,6-EET, -50 +/- 3.4% for 11,12-EET, and -60 +/- 3.7% for 14,15-EET). The abundance of the principal EET-degrading enzyme soluble epoxide hydrolase (sEH) was increased at the mRNA (+160 +/- 37%) and protein levels (+120 +/- 26%). Immunohistochemistry revealed dDAVP-mediated induction of sEH in connecting tubules and cortical and medullary collecting ducts, suggesting a role of these segments in the regulation of local interstitial EET signals. Incubation of murine kidney cell suspensions with 1 {mu}M 14,15-EET for 30 min reduced phosphorylation of NKCC2 at the AVP-sensitive threonine residues T96 and T101 (-66 +/-5%; p<0.05) while 14,15-DHET had no effect. Concomitantly, isolated perfused cTAL pretreated with 14,15-EET showed a 30% lower transport current under high and a 70% lower transport current under low symetric chloride concentrations. In sum, we have shown that activation of AVP signaling stimulates renal sEH biosynthesis and enzyme activity. The resulting reduction of EET tissue levels may be instrumental for increased NKCC2 transport activity during AVP-induced antidiuresis

    Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 95, 131101 (2009) and may be found at https://doi.org/10.1063/1.3231446.Small and large signal modulation measurements are carried out for 850 nm vertical cavity surface emitting lasers (VCSELs). The resonance frequency, damping factor, parasitic frequency, and -factor are extracted. Small signal modulation bandwidths larger than 20 GHz are measured. At larger currents the frequency response becomes partially limited by the parasitics and damping. Our results indicate that by increasing the parasitic frequency, the optical 3 dB bandwidth may be extended to ∼25GHz. A decrease in the damping should enable VCSEL bandwidths of 30 GHz for current densities not exceeding ∼10kA/cm2 and ultimately error-free optical links at up to 40 Gbit/s.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeEC/FP7/224211/EU/VISIT - Vertically Integrated Systems for Information Transfer/VISI

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369

    Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway

    Get PDF
    We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system

    Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Get PDF
    We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs) is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission

    Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis

    No full text
    In the kidney, tight junction proteins contribute to segment specific selectivity and permeability of paracellular ion transport. In the thick ascending limb (TAL) of Henle's loop, chloride is reabsorbed transcellularly, whereas sodium reabsorption takes transcellular and paracellular routes. TAL salt transport maintains the concentrating ability of the kidney and generates a transepithelial voltage that drives the reabsorption of calcium and magnesium. Thus, functionality of TAL ion transport depends strongly on the properties of the paracellular pathway. To elucidate the role of the tight junction protein claudin-10 in TAL function, we generated mice with a deletion of Cldn10 in this segment. We show that claudin-10 determines paracellular sodium permeability, and that its loss leads to hypermagnesemia and nephrocalcinosis. In isolated perfused TAL tubules of claudin-10-deficient mice, paracellular permeability of sodium is decreased, and the relative permeability of calcium and magnesium is increased. Moreover, furosemide-inhibitable transepithelial voltage is increased, leading to a shift from paracellular sodium transport to paracellular hyperabsorption of calcium and magnesium. These data identify claudin-10 as a key factor in control of cation selectivity and transport in the TAL, and deficiency in this pathway as a cause of nephrocalcinosis

    Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice

    No full text
    The Tamm-Horsfall protein (THP; uromodulin), the dominant protein in normal urine, is produced exclusively in the thick ascending limb of Henle's loop. THP mutations are associated with disease; however, the physiological role of THP remains obscure. We generated THP gene-deficient mice (THP -/-) and compared them with wild-type (WT) mice. THP -/-mice displayed anatomically normal kidneys. Steady-state electrolyte handling was not different between strains. Creatinine clearance was 63% lower in THP -/- than in WT mice (P < 0.05). Sucrose loading induced no changes between strains. However, water deprivation for 24 h decreased urine volume from 58 ± 9 to 28 ± 4 μl·g body wt-1·24 h-1 in WT mice (P < 0.05), whereas in THP -/- mice this decrease was less pronounced (57 ± 4 to 41 ± 5 μl·g body wt-1·24 h-1; P < 0.05), revealing significant interstrain difference (P < 0.05). We further used RT-PCR, Northern and Western blotting, and histochemistry to study renal transporters, channels, and regulatory systems under steady-state conditions. We found that major distal transporters were upregulated in THP -/- mice, whereas juxtaglomerular immunoreactive cyclooxygenase-2 (COX-2) and renin mRNA expression were both decreased in THP -/- compared with WT mice. These observations suggest that THP influences transporters in Henle's loop. The decreased COX-2 and renin levels may be related to an altered tubular salt load at the macula densa, whereas the increased expression of distal transporters may reflect compensatory mechanisms. Our data raise the hypothesis that THP plays an important regulatory role in the kidney
    corecore