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Abstract 

The tight junction proteins claudin-10 and claudin-16 are crucial for the paracellular 

reabsorption of cations along thick ascending limb of Henle’s loop in the kidney. In humans, 

mutations of CLDN16 cause familial hypomagnesemia with hypercalciuria and 

nephrocalcinosis, and mutations in CLDN10 impair kidney function. Mice lacking claudin-16 

display Mg2+ and Ca2+ wasting, while absence of claudin-10 results in hypermagnesemia and 

interstitial nephrocalcinosis. To study the functional interdependence of claudin-10 and claudin-

16 we generated double-deficient mice. These mice had normal serum Mg2+ and urinary 

excretion of Ca2+ and Mg2+, showed polyuria and Na+ retention at the expense of increased 

renal K+ excretion, but no nephrocalcinosis. Isolated thick ascending limb tubules of double 

mutants displayed a complete loss of paracellular cation selectivity and functionality. Mice 

lacking both claudin-10 and claudin-16 in the thick ascending limb recruited downstream 

compensatory mechanisms and showed hypertrophic distal convoluted tubules accompanied 

by changes in gene expression and phosphorylation of ion transporters in this segment, 

presumably triggered by the mild decrease in serum K+. Thus, we show that the severe 

individual phenotype in claudin-10 and claudin-16 knockout mice is corrected by the additional 

deletion of the other claudin, respectively.   
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Introduction 

The tight junction (TJ) is a supramolecular structure forming strand-like connections between 

adjacent epithelial cells, thereby regulating paracellular permeability. The main constituent of 

the TJ strands are the claudins, which are tetraspanning membrane proteins that interact via 

their extracellular segments with claudins of the neighbouring cells. Claudins are either sealing 

the paracellular cleft or forming a channel thus conveying charge and size selectivity to the 

paracellular pathway 1,2. 

In humans, mutations in CLDN16 cause the salt-wasting disorder familiar hypomagnesemia, 

hypercalciuria and nephrocalcinosis (FHHNC), characterized by renal loss of Ca2+ and Mg2+, 

and by nephrocalcinosis. In most of the cases, FHHNC leads to end stage renal disease, 

ultimately requiring renal transplantation 3. Patients with mutations in CLDN10 present with 

anhidrosis and mild kidney failure in one family or with a hypokalemic-alkalotic salt-losing 

tubulopathy in another family 4–6. Mice lacking claudin-16 display a pathology similar to that 

observed in FHHNC patients, i.e. hypomagnesemia and hypercalciuria 7. In sharp contrast, 

mice specifically lacking claudin-10 in the same part of the nephron display hypermagnesemia, 

hypocalciuria, nephrocalcinosis, and polyuria 8. Electrophysiological experiments in thick 

ascending limb (TAL) tubules lacking claudin-16 showed reduced paracellular Mg2+ and Ca2+ 

permeabilities 7. TAL tubules of Cldn10-deficient mice showed a reduced paracellular sodium 

permeability paralleled by an increased Mg2+ and Ca2+ permeability, and a higher expression 

of claudin-16 8. 

 

On the molecular basis, Claudin-10b forms paracellular cation channels, whereas permeability 

properties for mono- and divalent cations of claudin-16 alone or together with claudin-19 are 

still a matter of debate. The interaction of claudin-19 with claudin-16 is necessary for their 
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proper localization to the TJs and their co-expression has been reported to increase the 

paracellular permeability to cations in vitro 9,10. In contrast, expression of claudin-14 reduces 

the paracellular permeability to cations and acts as negative modulator of paracellular transport 

of divalent cations in response to elevated levels of Ca2+ 11–13. In the kidney claudin-10b is highly 

expressed in ISOM (inner stripe of the outer medulla), where paracellular transport of Na+ 

predominates, while claudin-16 is restricted to the OSOM and cortex, where it colocalizes with 

claudin-19 14. Claudin-10 and claudin-16 thereby do not colocalize in the same TJ strands and 

form a mosaic pattern, the permselectivity for Na+ increasing with increasing percentage of 

Claudin-10 positive TJ strands. Based on our previous findings in mice lacking either claudin-16 

or claudin-10 in the TAL and their expression profile, we hypothesized that claudin-10 and 

claudin-16 indeed contribute to different paracellular channels with different permeabilities to 

Na+, Ca2+ and Mg2+ 8. To test this hypothesis and to provide the basis for a better understanding 

of FHHNC, we generated mice lacking both, claudin-10 and claudin-16. 

 

Results 

We generated a mouse model lacking claudin-10 and claudin-16 by crossing claudin-16 

deficient mice (C16 KO) 7 with mice lacking claudin-10 specifically in the kidney (C10 cKO) 8. 

Resulting double knockout mice (dKO) were born at Mendelian ratio, and were viable and 

fertile. We confirmed hypomagnesemia in C16 KO and hypermagnesemia in C10 cKO 

(Figure 1A). In contrast, in mice deficient for both claudins, serum Mg2+ concentration was in 

the range of control animals. Correspondingly, fractional excretion of Mg2+ (FEMg) was 

increased in C16 KO and decreased in C10 cKO, but normalized in dKO. While C16 KO mice 

showed a more than 3-fold increase in fractional excretion of Ca2+ (FECa), dKO had urinary Ca2+ 

excretion levels comparable to controls (Figure 1B). Concomitantly, dKO showed no signs of 

nephrocalcinosis, a characteristic of hyperabsorption of divalent cations in C10 cKO (Figure 2). 
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The double deficient mice exhibited polyuria that they compensated by increased water intake 

(Table 1). Urinary pH was lower in all mouse models compared to control, ranging from a mild 

decrease in pH in C16 KO, to an intermediate acidity in the dKO, to a pronounced drop in 

urinary pH in C10 cKO mice. Na+, Cl- and K+ homeostasis was not affected in each of the single 

KO animal models. Interestingly, dKO animals, if compared to C16 KO, developed a mild but 

significant drop in plasma K+. Their increased FEK was accompanied by a decrease in FENa 

indicating compensatory activity of the collecting duct to maintain salt balance. 

 

Immunohistochemistry showed that claudin-16 and claudin-10 were differentially expressed 

along the cortico-medullary axis in the TAL (Figure 3). Claudin-10 immunoreactivity was found 

in cortex and medulla in basolateral structures and in TJs. Claudin-16 was restricted to TJs of 

cortex and outer stripe of outer medulla (OSOM) and absent in the inner stripe of outer medulla 

(ISOM). The mosaic distribution of claudin-10 and -16 was clearly visible in sections from 

control animals. In the ISOM only claudin-10 (Figure 3E,F), but in the cortex as well as in the 

OSOM, both claudins were expressed (Figure 3A,B). Whereas claudin-10 distribution remained 

unaltered in C16 KO (Figure 3D,H), claudin-16 expression extended to the ISOM in C10 cKO 

(Figure 3G). Both claudins were absent in dKO (data not shown). 

 

Consequently, we investigated the electrophysiological properties of TAL tubules dissected 

either from the medulla (mTAL, ISOM) or from the cortical region (cTAL, cortex) of the kidney. 

mTAL from control animals showed an average transepithelial voltage (Vte) of 9 mV, an 

equivalent short circuit current (I’sc) of 1300 µA/cm2 and a transepithelial resistance (Rte) of 

8 cm2. Absence of claudin-10, -16, or both resulted in a significant increase in Rte with a 

concomitant decrease in I’sc (Figure 4A). Vte was higher in C10 cKO mice. The effect of claudin 
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absence on resistance in mTAL was more prominent in tubules lacking claudin-10, the 

predominant claudin in the ISOM 15.  

In cTAL of C16 KO there was an increase in I’sc while Vte and Rte tended to remain in the control 

range. In C10 cKO tubules Rte was not affected in cTAL but the tubules generated a highly 

significant increase in Vte reflecting a substantially increased transepithelial ion transport current 

I’sc (Figure 4B). The absence of both claudins finally resulted in an increased Rte, a strongly 

reduced I’sc, and Vte was normalized compared to controls (Figure 4B). 

 

Changes in Rte were accompanied by altered paracellular selectivity properties of mTAL (Figure 

5A). Whereas the permeability ratio PNa/PCl in mTAL tubules of C16 KO was not different from 

control mice, mTAL of both C10 cKO and dKO kidneys displayed a strong loss in cation 

selectivity (decrease in PNa/PCl; Figure 5A). In accordance with the decreased PNa in C10 cKO, 

the selectivity was significantly shifted to the divalent cations Ca2+ and Mg2+ (increase in PCa/PNa 

and PMg/PNa, respectively). In turn, when claudin-16 was additionally deleted in dKO, this shift 

to divalent cations was attenuated (Figure 5A).  

In cTAL, similar to mTAL, the absence of claudin-16 did not affect PNa/PCl, whereas claudin-10 

deficiency resulted in a reduced PNa/PCl (Figure 5B). cTAL in C10 cKO displayed a strong 

preference of the paracellular pathway for Ca2+ and Mg2+. In contrast to the mTAL, the absence 

of claudin-16 in the cTAL caused a loss of Ca2+ and Mg2+ selectivity, as PNa/PCl was unaltered 

but PCa/PNa and PMg/PNa was reduced. The deficiency for both claudins blunted the effects on 

Ca2+ and Mg2+ selectivity, resulting in a normalized PCa/PNa and in a PMg/PNa that was higher 

than in C16 KO but lower than in C10 cKO.  

 

Using gene expression arrays, we identified genes differentially expressed in kidneys of the 

mouse models described in this study (Table 2). Claudin-19 expression was increased in the 
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dKO but unaltered in C16 KO and C10 cKO. While claudin-11 was expressed at significantly 

lower levels in both models lacking claudin-10, the expression of claudin-14 was comparable 

in all groups. Genes with a putative role in compensatory transcellular Ca2+ and Mg2+ handling 

in the downstream segment distal convoluted tubule (DCT) were also specially noted. Slc8a1, 

the gene encoding the basolateral Na+-Ca2+-exchanger (NCX1) was expressed at higher levels 

in C16 KO and dKO mice while suppressed in the C10 cKO. Similarly, the expression of the 

Mg2+ channel TRPM6 was increased in the absence of claudin-16, but reduced in C10 cKO 

mice. In dKO animals, the expression of this Mg2+ channel was higher than in C16 KO animals 

and the expression of the Mg2+ transporter Slc41a3 was higher than in C10 cKO. In addition, 

the expression of parvalbumin and CNNM2, both involved in DCT Mg2+ handling, was increased 

in dKO in comparison to control and C10 cKO mice. The CaSR, a key regulator of divalent 

cation metabolism was expressed at similar levels in mice of different genotype. 

As these findings where indicative for compensatory mechanisms in dKO especially in the DCT 

we investigated this nephron segment in more detail (Figure 6). Immunohistochemical staining 

of the sodium chloride cotransporter NCC (Slc12a3) to mark DCTs in kidney slices revealed a 

strong hypertrophy of this segment in dKO (Figure 6A). The fractional volume of this tubular 

segment was increased by 90% in comparison to control animals and to C16 KO (Figure 6A,B). 

NCC is the key salt transporting protein in DCT and its activity is mainly controlled by its 

phosphorylation state. Total protein amount as well as phosphorylation state were increased in 

dKO corroborating a compensatory hyperfunction of this segment (Figure 6C,D).  

Compensatory changes in sodium transport protein expression in other nephron segments 

were also assessed by western blot analysis (see supplemental Figure). In TAL the expression 

of NKCC2 remained unchanged, but the phosphorylation of NKCC2 is increased in dKOs when 

compared to controls. However, this does not translate in restoring of effective NaCl transport 

as shown in Figure 4B. In contrast, collecting duct and proximal tubule did not indicate 
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comparable compensatory changes and the expression of NHE3 (proximal tubule) and γ-ENaC 

(connecting tubule and collecting duct) were without substantial changes between genotypes. 

 

Discussion 

 

The loss of Ca2+ and Mg2+ in C16 KO and in FHHNC patients, respectively, has been explained 

primarily by the defect in the major paracellular pathway for these divalent cations in the TAL 7. 

Neither the proximal tubule nor the DCT were able to compensate for this defect in C16 KO. 

However, although the paracellular pathway was virtually absent in the TAL of dKO, they had 

normal urinary and serum levels of Ca2+ and Mg2+. We hypothesize that this is based on the 

differences in salt and water handling in dKO in comparison to control animals and the single 

knock-out models. 

The TAL is the motor of the concentration ability of the kidney by moving NaCl from the lumen 

into the interstitium of the outer medulla. This active transport by the TAL generates a lumen 

positive potential which is used secondarily to reabsorb cations. In the medulla, 50% of Na+ 

reabsorption is driven paracellularly by this potential, while in the cortical parts, it drives Ca2+, 

Mg2+ and Na+ 16. Accordingly, in the medulla claudin-10 but not claudin-16 is present in the TJ 

(Figure 3), whereas, in cortical parts of the TAL claudin-10 and claudin-16 positive TJ are found 

in parallel in a mosaic pattern 14 (Figure 3 and 7). 

Considering these differences in transport and claudin expression along the cortico-medullary 

axis isolated perfused mTAL and cTAL have been investigated separately. A qualitative 

estimate of paracellular ion permeation can be obtained considering Rte, the selectivity between 

cations and anions (PNa/PCl) and the ratio for the respective cation permeabilities (Figure 4 and 

Figure 5). The pathophysiology of the paracellular transport in the mTAL is dominated by 

claudin-10 15 (Figure 7). Whereas there was high paracellular cation selectivity (PNa/PCl) in 
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control and claudin-16 deficient mTAL, the cation selectivity of the paracellular pathway was 

abolished in claudin-10 deficient mTAL. As Rte was not increased in C10 cKO, the increase in 

Ca2+ and Mg2+ transport is caused by the increase in the permeability for Ca2+ and Mg2+, 

compensating the decrease in Na+ permeability by deletion of claudin-10. The morphological 

correlate for this observation is expansion of claudin-16 into the mTAL. The second factor for 

increased transport of Ca2+ and Mg2+ in mTAL is Vte. Obviously, the absence of claudin-10 

generates an increased driving force for hyperabsorption of divalent cations in C10 cKO 

resulting in medullary nephrocalcinosis. In dKO, this shift to divalent cation reabsorption was 

abolished by the additional loss of claudin-16 (Figure 7) and the mTAL lost tight junction 

selectivity (PNa/PCl  1) and permeability (Rte increased). Although the driving force Vte was still 

present in dKO tubules there was no longer interstitial calcification, underscoring the 

importance of claudin-16 expansion to mTAL for the C10 cKO phenotype. The reduction of Na+ 

transport (I’sc) in mTAL of dKO was most likely due the high paracellular resistance. As a result, 

the luminal fluid leaving the mTAL was less diluted and the interstitium less concentrated. This 

limited TAL function with limited salt and water conservation in dKO lead to polyuria as the renal 

concentration mechanism was impeded and to a salt load downstream of the TAL. 

Claudin-16 was expressed at higher levels in cTAL, but the absence of claudin 16 resulted in 

normal Rte and Vte, in this segment, and the selectivity for cations was not different from 

controls, reflecting an intact paracellular permeation pathway for Na+ (Figure 7). However, C16 

KO led to a strong reduction in the contribution of Ca2+ to cation permeability (PCa/PNa) and 

hence to the loss of Ca2+ via TAL. Another parameter which contributes to paracellular Ca2+ 

and Mg2+ transport especially in cTAL is the diffusion voltage of the TAL. It is also lumen positive 

and depends on a gradient for NaCl from the interstitium to the lumen (dilute luminal fluid) and 

on the cation selectivity of the paracellular pathway. Both prerequisites are impeded in dKO 

TAL as mentioned above. Since claudin-16 is missing in addition, there is no relevant route for 
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paracellular Ca2+ transport, which is in contrast to the situation in C10 cKO where claudin-16 

even extended to the medulla. 

Cation channel properties of claudin-16 are still a matter of debate as there is a lack of a suitable 

cell line that mimics paracellular TAL properties 17. Considering the TJ mosaic in the cTAL we 

could show that an increasing percentage of claudin-16 positive TJ correlates with increasing 

PMg/PNa 14. In the present study, comparison of TAL permeabilities from C10 cKO and dKO 

animals allow to estimate the effects of claudin-16 in the absence of any further channel-forming 

and thus potentially interfering claudins. In the cortex, deletion of claudin-16 in the absence of 

claudin-10 causes a substantial reduction in PMg/PNa and PCa/PNa together with an increase in 

Rte. This indicates that Mg2+ as well as Ca2+ permeabilities are dramatically reduced. In the 

medulla, the reduction of PMg/PNa and PCa/PNa is less pronounced and Rte remains constant. 

This is in line with a low but effective medullary claudin-16 expression in C10 cKO. Thus, the 

present results affirm the fundamental contribution of claudin-16 towards divalent cation 

permeability in the TAL. 

The absence of one claudin often results in the changed expression of other claudins. In 

kidneys of the dKO claudin-11 was expressed at lower levels whereas claudin-19 was 

expressed at higher levels. Claudin-11 and claudin-19 are considered to possess sealing 

properties 9,18,19 . However, claudin-11 KO mice as well as claudin-11/claudin-14 double 

deficient animals do not show significant changes in renal Ca2+ or Mg2+ handling under standard 

dietary conditions 20. Claudin-19 is interacting with claudin-16 and mutations in CLDN19 lead 

to FHHNC. Claudin-19 deficiency in mice leads to a phenotype reminiscent of claudin-16 

deficiency 9,10,21. It is still debated if claudin-19 forms a paracellular pore itself, but changes in 

the expression of claudin-19 alone, or together with other moderately expressed TAL claudins 

(claudin-3, claudin-11) might alter tight junction composition and Ca2+ and Mg2+ permeability 

resulting in the residual preference to divalent cations in the dKO TAL (Figure 5).  
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Besides these TAL findings this study also gives some interesting insights into renal regulation 

and compensation abilities. Regarding Ca2+ and Mg2+ metabolism, the dKO can cope better 

than C10 cKO and especially than C16 KO, although there is no evidence for improvement of 

divalent cation reabsorption in the cTAL itself. Compensatory response of the DCT downstream 

to the TAL was therefore the second focus of the present study (Figure 7). To summarize the 

expression studies on mRNA level C16 KO increased and C10 cKO decreased DCT transport 

of NaCl (e.g. NCC) and Ca2+ and Mg2+ (e.g. NCX1, TRPM6, Table 2). dKO, however, showed 

a massive compensatory response with a clearly visible increase in fractional DCT volume 

indicating a sustained physiologic perturbation which promoted structural remodeling of the 

DCT epithelium (Figure 6A). Thereby, dKO mice with their primary defect in the paracellular 

pathway did not show very severe salt wasting. In C10 cKO claudin-10 as main cation selective 

claudin is missing too, however, claudin-16 likely allows partially Na+ absorption, although Na+ 

permeability of claudin-16 has been discussed controversially in cell culture expression 

systems 9,22. Whereas C16 KO and C10 cKO only showed steady-state disturbance in their 

serum Mg2+ concentrations, dKO showed a slight reduction in serum K+, a decrease in FENa+ 

and increase in FEK+, revealing sodium conservation on the expense of K+ loss downstream the 

TAL. DCT, the connecting tubule and the collecting duct are on the one hand stimulated by 

systemic hormones like aldosterone and on the other hand challenged by increased luminal 

NaCl delivery. DCT has two principal mechanisms to increase its transport rate. Dietary NaCl 

restriction leads mainly to increase of transport capacity by expression and phosphorylation, 

whereas high rates of luminal ion delivery strongly induce an increase in fractional volume of 

DCT cells as shown in rats under chronic therapy with loop diuretics 23. Both mechanisms are 

likely recruited in dKO kidneys. NCC phosphorylation is a strong indicator of NCC activity and 

we show a consistent massive increase in pNCC in dKO in comparison to control animals. 

Lower serum K+ concentrations, only present in dKO, and stimulation of the WNK pathway 
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might be causative for this 24,25. The massive hypertrophy and hyperplasia of DCT cells which 

multiplies the transport capacity strongly supports the hypothesis that the TAL of dKO is virtually 

non-functional and delivering an increased ion load to the DCT. Consequently, the electrolyte 

homeostasis in dKO animals might be comparable to mice chronically treated with furosemide, 

in which the inhibition of TAL transport also does not affect urinary excretion of Ca2+ or serum 

levels of Mg2+ 26.We found no conclusive evidence for a compensatory contribution of CD on 

expression level.  

Increase in proximal tubular salt and water transport (beyond increase in total NHE3 protein 

expression) might serve as additional compensatory back-up for Ca2+ reabsorption. In Trpv5 

KO mice without functional transcellular Ca2+ reabsorption the inhibition of DCT NaCl transport 

is still effectively increasing renal Ca2+ conservation secondary to diuretic therapy induced 

volume loss 27,28,29.  

Renal compensation response to TAL transport defects obviously depends on the transport 

property which is specifically affected (trans- or paracellular), on the localization of the defect 

(mTAL, cTAL or beyond TAL) as well as on its severity (transcellular NaCl transport primarily 

or secondarily affected. 

 

Taken together (Figure 7), we show that the elimination of claudin-10 and claudin-16 severely 

impairs the cation-selective paracellular pathway in the TAL and its functionality in NaCl 

transport. However, the double-deficiency rescues deranged homeostasis of divalent cations 

in the single knockout animals, likely by affecting salt and water balance and thereby recruiting 

additional compensatory mechanisms. This observation might inspire the development of new 

therapeutic concepts for the treatment of FHHNC.  
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Material and Methods 

 

Generation of Cldn10/Cldn16-deficient mice. Mice homozygous for the floxed Cldn10 allele 

and ksp-Cre positive (Cldn10fl/fl cre+) 8 were bred with mice homozygous for the deleted Cldn16 

allele (Cldn16-/-) 7. Resulting double heterozygous were bred with each other to generate 

Cldn16-/- Cldn10fl/fl cre+ animals. We did not observe differences between Cldn16+/- and 

Cldn16+/+ animals and subsequently bred Cldn16-/- Cldn10fl/fl cre- to Cldn16+/- Cldn10fl/fl cre+ for 

the efficient generation of double mutant animals. The analysed animals were littermates with 

the following genotype: control mice (con) - Cldn16+/-, Cldn10fl/fl, ksp-cre-; claudin-16 deficient mice 

(C16 KO) - Cldn16-/-, Cldn10fl/fl, ksp-cre-; claudin-10 deficient mice (C10 cKO) - Cldn16+/-, Cldn10fl/fl, 

ksp-cre+, claudin-10/16 deficient mice (dKO) - Cldn16-/-, Cldn10fl/fl, ksp-cre+. The genetic 

background of the mice is C57Bl/6N (>97%). 

 

Antibodies Primary antibodies were rabbit-anti-claudin-10, mouse-anti-occludin 

(ThermoFisher Scientific), rabbit-anti-claudin-16 (provided by J Hou) 11, rabbit-anti-NCC and 

rabbit-anti-pNCC (provided by DH Ellison) rabbit-anti-NKCC2 30, guinea-pig-anti-pNKCC2 31, 

rabbit-anti-eNaC (-subunit) and rabbit-anti-NHE3 (biotrend), and mouse-anti-tubulin (abcam). 

Secondary antibodies were coupled to Alexa Fluor 488 or 555 or horesraddish 

peroxidase(ThermoFisher Scientific) . 

 

Histology and immunohistochemistry Mice were perfused with 4% (w/v) PFA in PBS and 

isolated tissues were fixed in 4% PFA in PBS overnight at 4°C. Tissues were dehydrated with 

alcohol and xylene, and embedded in paraffin. 10 μm paraffin sections were rehydrated with 

xylene and alcohol. 
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For von Kossa staining, sections were incubated for 20 min in 1% silver nitrate under UV 

exposure. After rinsing and incubation in 5% NaS2O3, tissues were counterstained with eosin, 

dehydrated in xylene and mounted using DPX mountant (Sigma).  

Immunohistochemistry was performed after antigen retrieval with sodium citrate pH 6.0. 

Sections were incubated in PBS supplemented with 0.3 % Triton X-100 and 5 % milk powder. 

After incubation with the primary antibody overnight, sections were incubated for 1 h with the 

respective secondary antibodies, and mounted with Fluorescence Mounting Medium (DAKO). 

Confocal images were acquired using a Leica TCS SPE microscope. 

For morphometric analysis the fractional volume of DCT segments among strains was 

evaluated by light microscopy according to previously described techniques 23. Briefly, 5 μm-

thick paraffin sections were stained for NCC to identify DCT. Cortical areas extending between 

the renal capsule and the outer medullary boundary were assessed. Sections were 

photographed and printed at a final magnification of ×100. At least three prints per animal were 

evaluated. 

 

Urine and blood parameters. Urine samples were collected from mice placed in metabolic 

cages for 17 h. Blood sampling was performed by retro-orbital puncture. Ion concentrations in 

urine and serum were measured using a standard clinical analyzer or colorimetric detection 

(Magnesium Quantichrom assay, Gentaur). Creatinine analysis was carried out using a Hitachi 

Analyzer. Whereas urinary creatinine analysis produced reliable values, all plasma creatinine 

values were below detection limit (0.02 mM) indicating no evident renal failure in any of the 

investigated groups of animals. Additionally, we measured serum creatinine in mice older than 

three months and found no differences (con: 0.13 ± 0.001 µM, C16 KO: 0.014 ± 0.004 µM, C10 

cKO: 0.11 ± 0.001 µM, dKO: 0.012 ± 0.001 µM). For calculation of fractional excretion plasma 

creatinine was assumed to be constant with a value of 0.015 mM for all animals of all groups 
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using the equation: [X]urine*const.[crea]plasma/([X]plasma*[crea]urine). All experimental procedures in 

animals were conducted according to the guidelines for proper conduct of animal experiments 

and approved by the institutional animal care and use committee in Kiel and by the LaGeSo in 

Berlin.  

 

Renal tubule perfusion. The methods for perfusion and transepithelial measurements in 

freshly isolated mouse TAL segments were performed as described previously 32. cTAL and 

mTAL were isolated mechanically from thin coronary sections at 4°C within 2 h after mouse 

death. Tubules were transferred into the bath on a heated microscope stage held and perfused 

by a concentric glass pipette system with a rate of 10-20 nl/min. A double-barreled perfusion 

pipette with an outer diameter of 10-12 μm was used. Barrel 1 served for perfusion, fluid 

exchange, and voltage measurement. Barrel 2 was used for constant, pulsed current injection 

(13 nA). Rte was calculated by cable equations 32. I'sc was calculated from Rte and Vte according 

to Ohms law. Continuous bath perfusion at 3-5 ml/min was obtained by gravity. Composition of 

the solutions used is listed in Table S1. Transcellular transport was measured under 

symmetrical luminal and basolateral perfusion with control solution (Ctrl) and after luminal 

application of 50 µM furosemide in Ctrl. In the continuous presence of luminal furosemide, 

basolateral fluids were replaced by modified solutions. For measurements of dilution potentials 

and the calculation of PNa/PCl, NaCl was diluted iso-osmotically at the basolateral side (solution 

30 mM NaCl). Bi-ionic diffusion potentials were then measured after basolateral replacement 

of Ctrl by solutions containing 72.5 mM MgCl2 or 72.5 mM CaCl2, respectively, and no Na+ 

(Table S1). Permeability ratios were calculated according to Günzel et al.33. 

 

Gene expression array. Mice were killed by cervical dislocation. Kidneys were isolated and 

immediately homogenized in TriZOL (Thermo Fisher Scientific). After chloroform extraction, 
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RNA was isolated from the aqueous phase using RNeasy columns (Qiagen). cRNA was 

produced using Illumina TotalPrep RNA Amplification Kit (Ambion) and hybridized to 

MouseWG-6 v2.0 Expression BeadChip Kit (Illumina). Data were normalized and analyzed 

using the GenomeStudio (Illumina).  

 

Western Blot. Western Blot analysis of kidney membrane preparations were performed as 

previously described 8. In brief, kidneys were homogenized with an Ultra-Turrax in 

homogenization buffer [140 mM NaCl, 20 mM Tris (pH 7.5), 1 mM EDTA] with protease 

inhibitors (Complete; Roche) and phosphatase inhibitors (PhosSTOP, Roche) and cleared by 

centrifugation at 1,000×g for 10 min. Membranes were pelleted at 100,000×g for 30 min and 

then resuspended in homogenization buffer supplemented with protease/phosphatase 

inhibitors and 2% (wt/vol) SDS. Equal amounts (10 µg) of protein were separated by 

SDS/PAGE and blotted onto PVDF membrane. After blocking, membranes were incubated with 

indicated antisera, washed, incubated with HRP-coupled secondary antisera and washed 

again. HRP was visualized with a Fuji LAS-1000 luminescent image analyzer. Densitometric 

quantifications were performed using ImageJ. 

 

Statistics.  

Values are expressed as means ± SEM. Statistical significance was calculated with one-way 

ANOVA with Holm-Bonferroni post hoc testing for multiple comparisons. A P value of <0.05 

was considered significant. 
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Figure 1 Homeostasis of Ca2+ and Mg2+ 

Summarized data are shown for serum Ca2+ and Mg2+ concentrations (A) and 

fractional excretions (FE) of these divalent ions (B). In contrast to C16 KO 

(hypomagnesemia) and C10 cKO (hypermagnesemia), dKO show normalized Mg2+ 

concentrations. The hypercalciuria and hypermagnesuria of C16 KO (shown as 

increased FECa2+ and FEMg2+) is normalized in dKO. Data are shown as mean ± SEM, n 

= 5-11. * p<0.05, ** p<0.01, *** p<0.001 in one-way ANOVA with Holm-Bonferroni 

post-hoc test.
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Figure 2 Absence of nephrocalcinosis in kidneys of C10C16dKOs

Strong Von Kossa staining of deposits is only found in kidney sections from C10 cKO 

mice but neither in C16 KO nor in C10C16 dKO mice. Sections were counterstained 

with eosin. Scale bar 1 mm

con C16 KO C10 cKO dKO
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  control C16 KO 

P 
C16 
vs. 
con 

C10 cKO 

P 
C10 
vs. 
con 

P 
C10 
vs. 

C16 
dKO 

P 
dKO 
vs. 
con 

P 
dKO 
vs. 

C16 
KO 

P 
dKO 
vs. 

C10 
cKO 

volume 
[ml/24h] 2,2 ± 0,2 2,9 ± 0,2   5,8 ± 0,6 *** *** 6,1 ± 0,3 *** ***   

osmolality 
[mosm/kg] 928 ± 43 898 ± 39   503 ± 37 *** *** 463 ± 8 *** ***   

pH 6,12 ± 0,05 5,93 ± 0,04 * 5,30 ± 0,05 *** *** 5,50 ± 0,04 *** *** ** 

FENa+ [%]* 0,37 ± 0,01 0,42 ± 0,02   0,34 ± 0,01     0,32 ± 0,01 ** ***   

FEK+ [%]* 15,83 ± 0,37 16,32 ± 0,44   16,95 ± 0,51     22,17 ± 0,66 *** *** ** 

FECl- [%]* 0,74 ± 0,03 0,74 ± 0,03   0,55 ± 0,03 ** ** 0,66 ± 0,02       

FECa2+ [%]* 0,29 ± 0,02 1,35 ± 0,14 *** 0,26 ± 0,03   *** 0,29 ± 0,03   ***   

FEMg2+ [%]* 7,32 ± 0,42 10,74 ± 0,66 ** 5,20 ± 0,52 * *** 6,51 ± 0,46   ***   

Na+ [mM] 153,5 ± 1,1 150,2 ± 0,9   154,0 ± 2,0     153,7 ± 0,8       

K+ [mM] 5,2 ± 0,2 5,6 ± 0,2   5,2 ± 0,1     4,7 ± 0,2   **   

Cl- [mM] 99,8 ± 1,4 99,2 ± 1,5   101,1 ± 3,3     96,7 ± 0,9       

Ca2+ [mM] 2,2 ± 0,0 2,3 ± 0,0   2,1 ± 0,1     2,3 ± 0,0       

Mg2+ [mM] 1,1 ± 0,1 0,9 ± 0,0 ** 1,5 ± 0,1 *** *** 1,3 ± 0,0   *** ** 

  n ≥ 11 n ≥ 12   n ≥ 5     n ≥ 6       

 
 
Table 1 Serum and urine parameters in control- and KO mice 
Urine parameters and serum electrolyte concentrations from metabolic cage experiments. Data 

are shown as mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001 in one-way ANOVA with Holm-

Bonferroni post-hoc test   



Figure 3 Immunolocalization of claudin-10 and claudin-16 along the 

cortico-medullary axis.

(A) In controls, claudin-16 (A) and claudin-10 (B) are expressed in the cortex and the 

outer stripe of outer medulla (OSOM) but only claudin-10 in the inner stripe of outer 

medulla (ISOM) (F). While tubules from C16 KO show an un-altered claudin-10 

distribution (D,H), expression of claudin-16 expands to ISOM tubules from C10 cKO 

(G) while it was absent in ISOM from controls (E). In contrast, C10 cKO did not affect 

the expression pattern of claudin-16 in OSOM/Cortex (C). Scale bar 25 µm
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Figure 4 Electrophysiological properties of isolated perfused mTAL and cTAL 

Summarized electrophysiological properties of mTAL (A) and cTAL (B) tubules: (A) In 

mTAL, Vte is elevated in C10 cKO vs. control. All KO models exhibit a higher 

resistance and a decreased transport current. (B) In cTAL, Vte is increased in C10 cKO 

and Rte shows a massive increase only in dKO. Transcellular transport current is 

increased in both single KO models but normalized in dKO. Data are shown as mean 

± SEM. n= 9-15.  * p<0.05, ** p<0.01, *** p<0.001 in one-way ANOVA with 

Holm-Bonferroni post-hoc test.
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Figure 5 Tubular permeability ratios of isolated perfused mTAL and cTAL

Relative ion permeability PNa/PCl calculated from NaCl dilution voltages and relative 

ion permeabilities PMg/PNa and PCa/PNa calculated from bi-ionic diffusion voltages from 

mTAL (A) and cTAL (B). (A) In mTAL, absence of claudin-10 reduces cation selectivity 

and increases PMg/PNa and PCa/PNa. Additional claudin-16 deficiency in dKO reverses 

this effect at least partially. (B) Absence of claudin-10 reduces cation selectivity. 

Deficiency for claudin-16 decreases and for claudin-10 increases PCa/PNa and PMg/PNa. 

In dKO PCa/PNa is normalized and PMg/PNa increased less in comparison to C10 cKO. 

Data are shown as mean ± SEM. n= 7-19.  * p<0.05, ** p<0.01, *** p<0.001 in 

one-way ANOVA with Holm-Bonferroni post-hoc test.
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Figure 6 Expression  and activity of NCC 

(A) Immunohistochemical analysis of NCC Expression in cortical kidney sections 

of con, C16 KO, C10 cKO and dKO. Scale bar 200 µm (B) Quantification of the 

fractional volume of  DCT segments of C16 KOs and dKOs normalized to 

control. Brackets indicate p<0.001, in one-way ANOVA with Holm-Bonferroni 

post-hoc test. (C) Western Blot analysis of kidney lysates of con, C16 KO, C10 

cKO and dKO mice using antisera detecting NCC and phosphorylated NCC 

(pT58: phosphorylated Threonine 58, pS71: phosphorylated Serine 71). (D) 

Densitometric analysis of western blot analysis. Bar graphs represent mean of 

signal intensity ratios relative to tubulin normalized to mean of controls ± SEM 

(n= 4). Brackets indicate p<0.05, in one-way ANOVA with Holm-Bonferroni 

post-hoc test. 
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Table 2 Gene array analysis of genes involved in distal tubular electrolyte transport  
Selected gene expression data from total kidneys of claudin KO mouse models described in 

this study. Expression values are given relative to control mice. Data are shown as mean ± 

SEM. * p<0.05, ** p<0.01, *** p<0.001 in one-way ANOVA with Holm-Bonferroni post-hoc test 

  Gene control C16 KO 

P 
C16 
vs. 
con 

C10 cKO 

P 
C10 
vs. 
con 

P 
C10 
vs. 

C16 
dKO 

P 
dKO 
vs. 
con 

P 
dKO 
vs. 

C16 
KO 

P 
dKO 
vs. 

C10 
cKO 

claudin-11 Cldn11 1.00 ± 0.05 1.09 ± 0.07   0.35 ± 0.01  *** ***  0.32 ± 0.01 *** ***   

claudin-14 Cldn14 1.00 ± 0.07 0.94 ± 0.15   1.20 ± 0.12     0.96 ± 0.09    

claudin-19 Cldn 19 1.00 ± 0.02 0.91 ± 0.06   1.12 ± 0.11     1.26 ± 0.06 * *  
 

                   

TRPV5 Trpv5 1.00 ± 0.05 0.99 ± 0.07  1.00 ± 0.01   1.05 ± 0.07    

NCX1 Slc8a1 1.00 ± 0.05 1.62 ± 0.13 * 0.43 ± 0.05 * * 1.50 ± 0.10 *  * 

CaSR Casr 1.00 ± 0.13 0.87 ± 0.06   1.03 ± 0.10     1.15 ± 0.14    

TRPM6 Trpm6 1.00 ± 0.07 1.27 ± 0.07 * 0.48 ± 0.01 ** *** 1.62 ± 0.08 ** * *** 

Parvalbumin Pvalb 1.00 ± 0.04 1.17 ± 0.28  0.07 ± 0.00 *** * 1.92 ± 0.24 *  ** 

CNNM2 Cnnm2 1.00 ± 0.04 1.22 ± 0.12  0.82 ± 0.07   1.28 ± 0.05 *  * 

SLC41a3 Slc41a3 1.00 ± 0.08 0.95 ± 0.15   0.82 ± 0.05  *   1.12 ± 0.13   * 
                    

NCC Slc12a3 1.00 ± 0.03 1.29 ± 0.06 * 0.66 ± 0.05 ** ** 1.54 ± 0.07 ** * * 

NKCC2 Slc12a1 1.00 ± 0.17 1.02 ± 0.19   1.03 ± 0.07     1.10 ± 0.21    

   n = 4 n = 4   n = 4    n = 4       



Figure 7 Paracellular TAL transport and effects on DCT transport

Simplified TAL epithelial model with claudin-10 positive (green) and 

claudin-16 positive (red) tight junctions together with the preferred 

cation. DCT pictogram to symbolize increase in fractional volume.
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Supplemental Figure  Expression of renal sodium transport proteins

Western Blot analysis of kidney lysates of con, C16 KO, C10 cKO and dKO mice 

using antisera detecting NKCC2, phosphorylated NKCC2 (A), eNaC γ−subunit 

(B) and NHE3 (C) Densitometric analysis of western blot analysis. Bar graphs 

represent mean of signal intensity ratios relative to tubulin normalized to mean of 

controls ± SEM (n= 4). Brackets indicate p<0.05, in one-way ANOVA with 

Holm-Bonferroni post-hoc test.
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