5,739 research outputs found

    Optimal design of injection mold for plastic bonded magnet

    Get PDF
    The optimal design of an injection mold for producing a stronger multipole magnet is carried out using the finite element method and the direct search method. It is shown that the maximum flux density in the cavity obtained by the optimal design is about 2.6 times higher than that of the initial shape determined empirically. 3-D analysis of the nonlinear magnetic field in the injection mold with complicated structure is also carried out. The calculated flux distribution on the cavity surface is in good agreement with the measured one</p

    Frost damage of bricks composing a railway tunnel monument in Central Japan: field monitoring and laboratory simulation

    No full text
    International audienceBricks of tunnels and bridges of Usui Pass railway (Japan) exposed to north are subject to frost damage. Average depth of erosion due to detachment of angular blocks is around 1-1.5 cm. In order to assess this weathering and to understand its mechanism, an experimental study was carried out in the field and laboratory. Field monitoring showed the combination of seasonal and diurnal freezing with a maximum of heave when the freezing front reached 5 cm depth. Bricks taken from the site were submitted to unidirectional freezing at capillary and vacuum saturation in the laboratory. Results showed that frost damage of bricks was favoured by high saturation level and repetition of freeze-thaw cycles

    Atmospheres and Spectra of Strongly Magnetized Neutron Stars -- III. Partially Ionized Hydrogen Models

    Full text link
    We construct partially ionized hydrogen atmosphere models for magnetized neutron stars in radiative equilibrium with surface fields B=10^12-5 \times 10^14 G and effective temperatures T_eff \sim a few \times 10^5-10^6 K. These models are based on the latest equation of state and opacity results for magnetized, partially ionized hydrogen plasmas that take into account various magnetic and dense medium effects. The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars. For the models with B=10^12-10^13 G, the spectral features due to neutral atoms lie at extreme UV and very soft X-ray energy bands and therefore are difficult to observe. However, the continuum flux is also different from the fully ionized case, especially at lower energies. For the superstrong field models (B\ga 10^14 G), we show that the vacuum polarization effect not only suppresses the proton cyclotron line as shown previously, but also suppresses spectral features due to bound species; therefore spectral lines or features in thermal radiation are more difficult to observe when the neutron star magnetic field is \ga 10^14 G.Comment: 12 pages, 10 figures; ApJ, accepted (v599: Dec 20, 2003

    An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    Get PDF
    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/cc neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy >>1 GeV was consistent with the MC expectation within 8.2% uncertainty.Comment: 16 pages, 16 figures, submitted to Prog. Theor. Exp. Phy

    The role of secondary Reggeons in central meson production

    Full text link
    We estimate the contribution of f_2 trajectory exchange to the central \eta and \eta^\prime production. It is shown that secondary Reggeons may give a large contribution to processes of double diffractive meson production at high energy.Comment: 7 pages, Latex, 5 figure

    Spectra of Doubly Heavy Quark Baryons

    Get PDF
    Baryons containing two heavy quarks are treated in the Born-Oppenheimer approximation. Schr\"odinger equation for two center Coulomb plus harmonic oscillator potential is solved by the method of ethalon equation at large intercenter separations. Asymptotical expansions for energy term and wave function are obtained in the analytical form. Using those formulas, the energy spectra of doubly heavy baryons with various quark compositions are calculated analytically.Comment: 19 pages, latex2e, published at PRC61(2000)04520

    Annealing Effect for Supersolid Fraction in 4^4He

    Full text link
    We report on experimental confirmation of the non-classical rotational inertia (NCRI) in solid helium samples originally reported by Kim and Chan. The onset of NCRI was observed at temperatures below ~400 mK. The ac velocity for initiation of the NCRI suppression is estimated to be ~10 μ\mum/sec. After an additional annealing of the sample at T=1.8T= 1.8 K for 12 hours, ~ 10% relative increase of NCRI fraction was observed. Then after repeated annealing with the same conditions, the NCRI fraction was saturated. It differs from Reppy's observation on a low pressure solid sample.Comment: to be published in J. of Low Temp. Phys. (QFS2006 proceedings
    corecore