16 research outputs found

    The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    Get PDF
    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with Ssubstitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening

    Repair of gaps opposite lesions by homologous recombination in mammalian cells

    Get PDF
    Damages in the DNA template inhibit the progression of replication, which may cause single-stranded gaps. Such situations can be tolerated by translesion DNA synthesis (TLS), or by homology-dependent repair (HDR), which is based on transfer or copying of the missing information from the replicated sister chromatid. Whereas it is well established that TLS plays an important role in DNA damage tolerance in mammalian cells, it is unknown whether HDR operates in this process. Using a newly developed plasmid-based assay that distinguishes between the three mechanisms of DNA damage tolerance, we found that mammalian cells can efficiently utilize HDR to repair DNA gaps opposite an abasic site or benzo[a]pyrene adduct. The majority of these events occurred by a physical strand transfer (homologous recombination repair; HRR), rather than a template switch mechanism. Furthermore, cells deficient in either the human RAD51 recombination protein or NBS1, but not Rad18, exhibited decreased gap repair through HDR, indicating a role for these proteins in DNA damage tolerance. To our knowledge, this is the first direct evidence of gap-lesion repair via HDR in mammalian cells, providing further molecular insight into the potential activity of HDR in overcoming replication obstacles and maintaining genome stability

    A mammalian functional-genetic approach to characterizing cancer therapeutics

    Get PDF
    Supplementary information is available online at http://www.nature.com/naturechemicalbiology/. Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/.Identifying mechanisms of drug action remains a fundamental impediment to the development and effective use of chemotherapeutics. Here we describe an RNA interference (RNAi)–based strategy to characterize small-molecule function in mammalian cells. By examining the response of cells expressing short hairpin RNAs (shRNAs) to a diverse selection of chemotherapeutics, we could generate a functional shRNA signature that was able to accurately group drugs into established biochemical modes of action. This, in turn, provided a diversely sampled reference set for high-resolution prediction of mechanisms of action for poorly characterized small molecules. We could further reduce the predictive shRNA target set to as few as eight genes and, by using a newly derived probability-based nearest-neighbors approach, could extend the predictive power of this shRNA set to characterize additional drug categories. Thus, a focused shRNA phenotypic signature can provide a highly sensitive and tractable approach for characterizing new anticancer drugs.National Institute of Mental Health (U.S.) (grant RO1 CA128803-03)American Association for Cancer ResearchMassachusetts Institute of Technology. Dept. of BiologyNational Cancer Institute (U.S.). Integrative Cancer Biology Program (grant 1-U54-CA112967

    MLH1 mediates PARP-dependent cell death in response to the methylating agent N-methyl-N-nitrosourea

    Get PDF
    Background:Methylating agents such as N-methyl-N-nitrosourea (MNU) can cause cell cycle arrest and death either via caspase-dependent apoptosis or via a poly(ADP-ribose) polymerase (PARP)-dependent form of apoptosis. We wished to investigate the possible role of MLH1 in signalling cell death through PARP.Methods:Fibroblasts are particularly dependent on a PARP-mediated cell death response to methylating agents. We used hTERT-immortalised normal human fibroblasts (WT) to generate isogenic MLH1-depleted cells, confirmed by quantitative PCR and western blotting. Drug resistance was measured by clonogenic and cell viability assays and effects on the cell cycle by cell sorting. Damage signalling was additionally investigated using immunostaining.Results:MLH1-depleted cells were more resistant to MNU, as expected. Despite having an intact G2/M checkpoint, the WT cells did not initially undergo cell cycle arrest but instead triggered cell death directly by PARP overactivation and nuclear translocation of apoptosis-inducing factor (AIF). The MLH1-depleted cells showed defects in this pathway, with decreased staining for phosphorylated H2AX, altered PARP activity and reduced AIF translocation. Inhibitors of PARP, but not of caspases, blocked AIF translocation and greatly decreased short-term cell death in both WT and MLH1-depleted cells. This MLH1-dependent response to MNU was not blocked by inhibitors of ATM/ATR or p53.Conclusion:These novel data indicate an important role for MLH1 in signalling PARP-dependent cell death in response to the methylating agent MNU

    Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53

    Get PDF
    Malignant melanomas are highly resistant to chemotherapy. First-line chemotherapeutics used in melanoma therapy are the methylating agents dacarbazine (DTIC) and temozolomide (TMZ) and the chloroethylating agents BCNU and fotemustine. Here, we determined the mode of cell death in 11 melanoma cell lines upon exposure to TMZ and fotemustine. We show for the first time that TMZ induces apoptosis in melanoma cells, using therapeutic doses. For both TMZ and fotemustine apoptosis is the dominant mode of cell death. The contribution of necrosis to total cell death varied between 10 and 40%. The O6-methylguanine-DNA methyltransferase (MGMT) activity in the cell lines was between 0 and 1100 fmol mg−1 protein, and there was a correlation between MGMT activity and the level of resistance to TMZ and fotemustine. MGMT inactivation by O6-benzylguanine sensitized all melanoma cell lines expressing MGMT to TMZ and fotemustine-induced apoptosis, and MGMT transfection attenuated the apoptotic response. This supports that O6-alkylguanines are critical lesions involved in the initiation of programmed melanoma cell death. One of the cell lines (MZ7), derived from a patient subjected to DTIC therapy, exhibited a high level of resistance to TMZ without expressing MGMT. This was related to an impaired expression of MSH2 and MSH6. The cells were not cross-resistant to fotemustine. Although these data indicate that methylating drug resistance of melanoma cells can be acquired by down-regulation of mismatch repair, a correlation between MSH2 and MSH6 expression in the different lines and TMZ sensitivity was not found. Apoptosis in melanoma cells induced by TMZ and fotemustine was accompanied by double-strand break (DSB) formation (as determined by H2AX phosphorylation) and caspase-3 and -7 activation as well as PARP cleavage. For TMZ, DSBs correlated significantly with the apoptotic response, whereas for fotemustine a correlation was not found. Melanoma lines expressing p53 wild-type were more resistant to TMZ and fotemustine than p53 mutant melanoma lines, which is in marked contrast to previous data reported for glioma cells treated with TMZ. Overall, the findings are in line with the model that in melanoma cells TMZ-induced O6-methylguanine triggers the apoptotic (and necrotic) pathway through DSBs, whereas for chloroethylating agents apoptosis is triggered in a more complex manner

    Mismatch Repair–Independent Increase in Spontaneous Mutagenesis in Yeast Lacking Non-Essential Subunits of DNA Polymerase ε

    Get PDF
    Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol ε in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol ε holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol ε proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol δ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol ε and the template DNA during processive DNA synthesis and during processive 3′ to 5′exonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol δ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    Get PDF
    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity

    Visualization and Interpretation of Eukaryotic DNA Replication Intermediates In Vivo by Electron Microscopy

    No full text
    The detailed understanding of the DNA replication process requires structural insight. The combination of psoralen cross-linking and electron microscopy has been extensively exploited to reveal the fine architecture of in vivo DNA replication intermediates. This approach proved instrumental to uncover the basic mechanisms of DNA duplication, as well as the perturbation of this process by various forms of replication stress. The replication structures are stabilized in vivo (by psoralen cross-linking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron micro- scope. This chapter outlines the procedures required to visualize and interpret in vivo replication interme- diates of genomic DNA, extracted from budding yeast, Xenopus egg extracts, or cultured mammalian cells
    corecore