2 research outputs found

    Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli

    Get PDF
    nspired by the structure and functions of the human skin, a highly sensitive capacitive‐piezoelectric flexible sensing skin with fingerprint‐like patterns to detect and discriminate between spatiotemporal tactile stimuli including static and dynamic pressures and textures is presented. The capacitive‐piezoelectric tandem sensing structure is embedded in the phalange of a 3D‐printed robotic hand, and a tempotron classifier system is used for tactile exploration. The dynamic tactile sensor, interfaced with an extended gate configuration to a common source metal oxide semiconductor field effect transistor (MOSFET), exhibits a sensitivity of 2.28 kPa−1. The capacitive sensing structure has nonlinear characteristics with sensitivity varying from 0.25 kPa−1 in the low‐pressure range (<100 Pa) to 0.002 kPa−1 in high pressure (≈2.5 kPa). The output from the presented sensor under a closed‐loop tactile scan, carried out with an industrial robotic arm, is used as latency‐coded spike trains in a spiking neural network (SNN) tempotron classifier system. With the capability of performing a real‐time binary naturalistic texture classification with a maximum accuracy of 99.45%, the presented bioinspired skin finds applications in robotics, prosthesis, wearable sensors, and medical devices
    corecore