420 research outputs found

    Designing Topological Bands in Reciprocal Space

    Full text link
    Motivated by new capabilities to realise artificial gauge fields in ultracold atomic systems, and by their potential to access correlated topological phases in lattice systems, we present a new strategy for designing topologically non-trivial band structures. Our approach is simple and direct: it amounts to considering tight-binding models directly in reciprocal space. These models naturally cause atoms to experience highly uniform magnetic flux density and lead to topological bands with very narrow dispersion, without fine-tuning of parameters. Further, our construction immediately yields instances of optical Chern lattices, as well as band structures of higher Chern number, |C|>1

    Quantum spin liquid at finite temperature: proximate dynamics and persistent typicality

    Get PDF
    Quantum spin liquids are long-range entangled states of matter with emergent gauge fields and fractionalized excitations. While candidate materials, such as the Kitaev honeycomb ruthenate α\alpha-RuCl3_3, show magnetic order at low temperatures TT, here we demonstrate numerically a dynamical crossover from magnon-like behavior at low TT and frequencies ω\omega to long-lived fractionalized fermionic quasiparticles at higher TT and ω\omega. This crossover is akin to the presence of spinon continua in quasi-1D spin chains. It is further shown to go hand in hand with persistent typicality down to very low TT. This aspect, which has also been observed in the spin-1/2 kagome Heisenberg antiferromagnet, is a signature of proximate spin liquidity and emergent gauge degrees of freedom more generally, and can be the basis for the numerical study of many finite-TT properties of putative spin liquids.Comment: 13 pages, 11 figures, accepted versio

    Classical generalized constant coupling model for geometrically frustrated antiferromagnets

    Full text link
    A generalized constant coupling approximation for classical geometrically frustrated antiferromagnets is presented. Starting from a frustrated unit we introduce the interactions with the surrounding units in terms of an internal effective field which is fixed by a self consistency condition. Results for the magnetic susceptibility and specific heat are compared with Monte Carlo data for the classical Heisenberg model for the pyrochlore and kagome lattices. The predictions for the susceptibility are found to be essentially exact, and the corresponding predictions for the specific heat are found to be in very good agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of the pyrochlore specific heat correcte

    Raman Scattering Signatures of Kitaev Spin Liquids in A2_2 IrO3_3 Iridates

    Full text link
    We study theoretically the Raman scattering response I(ω)I(\omega) in the gapless quantum spin liquid phase of the Kitaev-Heisenberg model. The dominant polarization-independent contribution IK(ω)I_K (\omega) reflects the density of states of the emergent Majorana fermions in the ground-state flux-sector. The integrability-breaking Heisenberg exchange generates a second contribution, whose dominant part IH(ω)I_H (\omega) has the form of a quantum quench corresponding to an abrupt insertion of four Z2Z_2 gauge fluxes. This results in a weakly polarization dependent response with a sharp peak at the energy of the flux excitation accompanied by broad features, which can be related to Majorana fermions in the presence of the perturbed gauge field. We discuss the experimental situation and explore more generally the influence of integrability breaking for Kitaev spin liquid response functions.Comment: 9 pages including supp. ma

    Thermodynamics and fractal dynamics of nematic spin ice, a doubly frustrated pyrochlore Ising magnet

    Full text link
    The Ising antiferromagnets on the triangular and on the pyrochlore lattices are two of the most iconic examples of magnetic frustration, paradigmatically illustrating many exotic properties such as emergent gauge fields, fractionalisation, and topological order. In this work, we show that the two instances of frustration can, remarkably, be combined in a single system, where they coexist without inducing conventional long range ordering. We show that the system undergoes a first order phase transition upon lowering the temperature, into a yet different frustrated phase that we characterise to exhibit nematic order. We argue that an extensive degeneracy survives down to zero temperature, at odds with a customary Pauling estimate. Dynamically, we find evidence of anomalous noise in the power spectral density, arising from an effectively anisotropic fractal motion of monopoles at low temperature.Comment: 19 pages, 18 figure

    Magnetic phase diagram of the antiferromagnetic pyrochlore Gd2Ti2O7

    Full text link
    Gd2Ti2O7 is a highly frustrated antiferromagnet on a pyrochlore lattice, where apart from the Heisenberg exchange the spins also interact via dipole-dipole forces. We report on low-temperature specific heat measurements performed on single crystals of Gd2Ti2O7 for three different directions of an applied magnetic field. The measurements reveal the strongly anisotropic behaviour of Gd2Ti2O7 in a magnetic field despite the apparent absence of a significant single-ion anisotropy for Gd3+. The H-T phase diagrams are constructed for H//111], H//[110] and H//[112]. The results indicate that further theoretical work beyond a simple mean-field model is required.Comment: 4 figure

    Three dimensional resonating valence bond liquids and their excitations

    Full text link
    We show that there are two types of RVB liquid phases present in three-dimensional quantum dimer models, corresponding to the deconfining phases of U(1) and Z_2 gauge theories in d=3+1. The former is found on the bipartite cubic lattice and is the generalization of the critical point in the square lattice quantum dimer model found originally by Rokhsar and Kivelson. The latter exists on the non-bipartite face-centred cubic lattice and generalizes the RVB phase found earlier by us on the triangular lattice. We discuss the excitation spectrum and the nature of the ordering in both cases. Both phases exhibit gapped spinons. In the U(1) case we find a collective, linearly dispersing, transverse excitation, which is the photon of the low energy Maxwell Lagrangian and we identify the ordering as quantum order in Wen's sense. In the Z_2 case all collective excitations are gapped and, as in d=2, the low energy description of this topologically ordered state is the purely topological BF action. As a byproduct of this analysis, we unearth a further gapless excitation, the pi0n, in the square lattice quantum dimer model at its critical point.Comment: 9 pages, 2 figure

    Quantum generalized constant coupling model for geometrically frustrated antiferromagnets

    Full text link
    A generalized constant coupling approximation for quantum geometrically frustrated antiferromagnets is presented. Starting from a frustrated unit, we introduce the interactions with the surrounding units in terms of an internal effective field which is fixed by a self consistency condition. Results for the static magnetic susceptibility and specific heat are compared with previous results in the framework of this same model for the classical limit. The range of applicability of the model is discussed.Comment: 11 pages, 6 figures, 1 Tables, typeset using RevTeX 4, small correction in Table

    Order induced by dipolar interactions in a geometrically frustrated antiferromagnet

    Full text link
    We study the classical Heisenberg model for spins on a pyrochlore lattice interacting via long range dipole-dipole forces and nearest neighbor exchange. Antiferromagnetic exchange alone is known not to induce ordering in this system. We analyze low temperature order resulting from the combined interactions, both by using a mean-field approach and by examining the energy cost of fluctuations about an ordered state. We discuss behavior as a function of the ratio of the dipolar and exchange interaction strengths and find two types of ordered phase. We relate our results to the recent experimental work and reproduce and extend the theoretical calculations on the pyrochlore compound, Gd2_2Ti2_2O7_7, by Raju \textit{et al.}, Phys. Rev. B {\bf 59}, 14489 (1999).Comment: 5 pages, 5 figures, AMSLaTe

    Many-body delocalization via symmetry emergence

    Get PDF
    Many-body localization (MBL) provides a mechanism to avoid thermalization in many-body quantum systems. Here, we show that an {\it emergent} symmetry can protect a state from MBL. Specifically, we propose a Z2\Z_2 symmetric model with nonlocal interactions, which has an analytically known, SU(2) invariant, critical ground state. At large disorder strength all states at finite energy density are in a glassy MBL phase, while the lowest energy states are not. These do, however, localize when a perturbation destroys the emergent SU(2) symmetry. The model also provides an example of MBL in the presence of nonlocal, disordered interactions that are more structured than a power law. The presented ideas raise the possibility of an `inverted quantum scar', in which a state that does not exhibit area law entanglement is embedded in an MBL spectrum, which does.Comment: 5 pages, 3 figure
    • …
    corecore